
Robust and Generalizable Predictive
Models for Business Processes

Praveen Venkateswaran1(B), Vinod Muthusamy2, Vatche Isahagian3,
and Nalini Venkatasubramanian1

1 University of California Irvine, Irvine, USA
{praveenv,nalini}@uci.edu

2 IBM Research, Yorktown, USA
vmuthus@us.ibm.com

3 IBM Research, Cambridge, USA
vatchei@ibm.com

Abstract. Machine Learning models, and more recently Deep Learning
models have gained popularity for predictive process monitoring. Predict-
ing the process outcome, remaining time to completion, or the next activ-
ity of a running process can be crucial to provide decision information and
enable timely intervention by case managers. These models fundamen-
tally assume that the process logs used for training and inference follow
the same data distribution and patterns. However, many real-world pro-
cesses can have gradual or sudden changes, and logs themselves may be
associated with different versions of process models modified over time,
or customized by different departments with different policies. These
can introduce spurious biases and correlations in the data, which can
influence predictive models during training and adversely impact their
accuracy. In this work, we present RoGen, an approach to train robust
predictive models that can identify these spurious correlations and gener-
alize to data with differing distributions. We show that our approach can
also be adopted by existing predictive models to improve their robustness
and generalizability. We evaluate our approach using real-world event
logs and show that even in the presence of spurious data correlations,
our models remain robust and outperform existing predictive models.

1 Introduction

There has been an increase in the incorporation of machine learning models in
numerous application domains, including business processes. They can be used
to predict process outcomes, remaining time to completion or even the next
activity of running processes which are important for case managers. The goal
of any machine learning model is to learn complex prediction rules using the
various features or attributes in a given training dataset for future predictions.
This could be either a classification task for discrete predictions, or a regression
task for predicting continuous variables. Predictive models learn from features
or attributes in the training data that have a significant correlation or causal
c© Springer Nature Switzerland AG 2021
A. Polyvyanyy et al. (Eds.): BPM 2021, LNCS 12875, pp. 105–122, 2021.
https://doi.org/10.1007/978-3-030-85469-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85469-0_9&domain=pdf
https://doi.org/10.1007/978-3-030-85469-0_9

106 P. Venkateswaran et al.

relationship with the target variable. Such invariant features are those whose
correlations with the target are strong in any new test data, thus enabling accu-
rate predictions.

However, there are numerous recent examples highlighting the brittleness of
models that are trained using traditional approaches [7,13,20,23,26]. This can
be attributed to the fact that real-world data used for training often have inher-
ent data biases due to information or sampling bias, confounding factors, etc.
These can introduce spurious correlations in features that do not have a causal
relationship with the target to be predicted. Moreover, since model training
involves minimizing the training error, this leads to models absorbing all corre-
lations (both invariant and spurious) found in the training data. This influence
of spurious correlations cause models to perform poorly in test data where these
spurious biases no longer hold. Moreover, when these models are trained on data
with a specific distribution, and have to generalize to data with slightly different
distributions, they can often fail.

A classic example on the need for robust and generalizable ML models was
highlighted by [3] where a model, trained to classify images of cows in pastures
and camels in the desert, failed when the backgrounds were switched because it
was influenced by the spurious correlation of the background (i.e., green pastures
with cows and sandy deserts with camels) rather than relying on the invariant
features (i.e., the cows and camels themselves).

Even in business processes, real-world process models can have gradual or
sudden changes, such as concept drift [5]. In addition, the logs used to train
models could be associated with different versions of process models modified
over time, or even be customized by different departments with differing policies.
These factors, among others, can result in the presence of spurious correlations
while training predictive models for business processes and adversely impact
their robustness and generalizability, resulting in poor performance.

To illustrate this with an example, Table 1 shows the four most common case
variants from sample event logs of the servicing departments of a hypothetical
car dealership with two locations A and B. The dealership provides periodic
servicing reminders to its customers who either purchased the car from the dealer
(in-house), or purchased elsewhere but use the dealer for servicing (external). In
order to retain their in-house customers, the dealership also provides many of
them special offers in the form of discounts, extended warranties, etc. Moreover,
at location A, these offers are also provided to customers who sign up for their
loyalty program.

The dealership wants a predictive model that, given customer information,
can predict whether or not they should be sent special offers. From the table
we can see that the model would require all features, and not just the activity
sequence, in order to generate accurate predictions. However, a model trained
on a consolidated log from both locations composed primarily of these four case-
variants, would erroneously correlate the car brand X with giving special offers,
and brand Y with not providing special offers. This is a spurious correlation, as
opposed to the invariant correlation of determining special offers based on the
customer type and loyalty program information. The influence of this spurious

Robust and Generalizable Predictive Models for Business Processes 107

correlation might lead the model to incorrectly predict that an in-house customer
with a brand Y car should not be given a special offer. Similarly, it might also
incorrectly predict that an external customer with a brand X car who is not a
loyalty member should be given a special offer.

Table 1. Four most common case variants of the event logs of a car dealership service
system from two locations: A (top) and B (bottom)

Case: id (Loc. A) Timestamp Activity Case: cust. type Case: loyalty

member

Case: car

brand

1 2/1/21 10:05 Obtain car info. External True X

1 2/1/21 10:30 Email reminder External True X

1 2/1/21 10:35 Special offer External True X

2 10/2/21 13:45 Obtain car info. In-house False X

2 10/2/21 14:10 Email reminder In-house False X

2 10/2/21 14:15 Special offer In-house False X

Case: id (Loc. B) Timestamp Activity Case: cust. type Case: loyalty

member

Case: car

brand

3 12/2/21 16:00 Obtain car info. External True Y

3 12/2/21 16:30 Email reminder External True Y

4 15/1/21 10:00 Obtain car info. external False Y

4 15/1/21 10:25 Email reminder External False Y

There have been increasing efforts to develop machine learning models
that are robust to spurious correlations and which can generalize to Out-Of-
Distribution (OOD) datasets [2,4,19]. However, there has not been much existing
work in the context of training robust predictive models for business processes.

In this paper, we present our approach, named RoGen, which uses the concept
of Invariant Risk Minimization (IRM) [2] to train robust predictive models. IRM
has been commonly applied to computer vision tasks, but it has not been used
for sequential data like business process event logs. Furthermore, to the best of
our knowledge, this is the first paper to develop an approach to train robust and
generalizable predictive models for process mining logs that can identify and
handle spurious data correlations.

We also show how our approach can work even for training existing predictive
models, using a model by [6], and demonstrate the improvement in robustness.
We evaluate the performance of the models trained with our approach on real-life
event logs against several baselines.

The following section provides background on predictive monitoring, machine
learning, and IRM. Section 3 discusses related work in predictive monitoring for
business processes. We present our approach in Sect. 4 and evaluate its effec-
tiveness in Sect. 5. Section 6 concludes the paper and discusses opportunities for
future work.

108 P. Venkateswaran et al.

2 Background

In this section, we define several elements of process mining and different predic-
tive monitoring tasks. We also provide background on the concept of Invariant
Risk Minimization (IRM) that we use to train machine learning models like
RNNs and LSTMs that are suited for sequence predictions.

2.1 Event Logs, Traces, and Sequences

Let A be the set of process activities, C be the set of case identifiers, T be the
set of timestamps, and Dj be the set of attributes or features, 1 ≤ j ≤ m, where
each attribute dj ∈ Dj can be either categorical or numerical. We also define
U = A × C × T × Dj as the event universe.

Definition 1 (Event). An event εi ∈ U is a tuple εi = (ai, ci, ti, di1, ..., dim),
where ai ∈ A is the process activity, ci ∈ C is the case identifier, ti ∈ T is its
timestamp, and dij ∈ Dj, 1 ≤ j ≤ m, are the event attributes. Given an event
εi, we define the projection functions π = {πA, πC , πT , πDj

} where πA : εi →
ai, πC : εi → ci, πT : εi → ti, and πDj

: εi → dij.

Definition 2 (Trace). A trace is a non-empty sequence of events σ =
〈ε1, ..., εn〉, ∀ εi ∈ U and n = |σ|, such that for all pairs of events εi, εj in a
given case, where 1 ≤ i < j ≤ |σ|, πT (εi) ≤ πT (εj) and πC(εi) = πC(εj).

Definition 3 (Trace prefix and suffix). Given a trace σ = 〈ε1, ε2, ..., εn〉,
the prefix of length k is σk

p = 〈ε1, ε2, ..., εk〉, and the suffix of length k is σk
s =

〈εk+1, ..., εn〉, where n = |σ| and 1 ≤ k < n.

Definition 4 (Event log). An event log is a set of traces L = {σ1, ..., σl} such
that each event appears at most once in L.

2.2 Predictive Monitoring Tasks

Predictive models, given a prefix σk
p of a running case, aim to predict a future

event εk+1, or a suffix σk
s of future events. Existing work has looked at four kinds

of predictive monitoring tasks - (1) Next activity prediction, (2) Next timestamp
prediction, (3) Activity suffix prediction, and (4) Remaining time prediction. To
define these, let Ω be a predictive model, σk

p be a trace prefix as defined above,
ε′ be a future predicted event, and ⊕ be the concatenation operator between two
sequences.

Definition 5 (Next activity). Given a trace prefix, the model predicts the next
activity of the trace, defined as ΩA(σk

p) = πA(ε′
k+1).

Definition 6 (Next timestamp). Given a trace prefix, the model determines
the timestamp of the next activity of the trace by predicting its duration as
ΩT (σk

p) = πT (ε′
k+1) − πT (εk).

Robust and Generalizable Predictive Models for Business Processes 109

Definition 7 (Activity suffix). The model predicts the activity suffix of a run-
ning case by recursively predicting the next activity for multiple future activities.
This can be denoted as ΩAS = 〈ΩA(σ′) = πA(ε′

i)|σ′ = σk
p ⊕ 〈ε′

k+1, ..., ε
′
i−1〉〉.

Definition 8 (Remaining time). The model predicts the remaining time
duration of a running case, by recursively predicting the duration of each future
predicted activity. Let θ be the sequence of predicted future timestamps where
θ = 〈ΩT (σ′) = πT (ε′

i)−πT (ε′
i−1)|σ′ = σk

p ⊕〈ε′
k+1, ..., ε

′
i−1〉〉. Then the remaining

time can be computed as ΩRT (σk
p) =

∑n
i=k θi.

2.3 Neural Networks and Invariant Risk Minimization

A typical neural network model consists of a layer of inputs X, a layer of outputs
Y, and multiple layers in between that are referred to as hidden layers. The
model optimizes the parameters of its hidden layers θ, while learning a mapping
Y = f(X; θ) from the input to output space. In order to train these networks, a
loss or risk function L(θ) : Rn → R is used, which maps the model parameters
θ to the expected loss on X × Y for a given function �:

L(θ) = E(x,y)�(fθ(x), y) (1)

where x ∈ X, y ∈ Y , and � is a function like cross-entropy loss for classification.
The standard Empirical Risk Minimization (ERM) methodology used by exist-
ing predictive monitoring approaches tries to minimize the average loss over all
training examples. ERM fundamentally assumes that the data is independent
and identically distributed (i.i.d) and that the training and test distributions are
similar. However, as described in Sect. 1, this may not hold in real-world datasets
and it has been shown that in these situations, ERM is not robust and does not
achieve good Out-of-Distribution (OOD) generalization. This has motivated the
need for alternative approaches to train predictive models, that can identify and
handle spurious correlations.

In this paper, to create robust and generalizable predictive models for busi-
ness processes, we leverage the concept of Invariant Risk Minimization (IRM) [2].
To use IRM, we consider the event logs to consist of E = {e1, ..., en} environ-
ments, where 1 ≤ |E| < ∞. Each environment refers to a potential source of
spurious correlations, such as logs from multiple departments, different process
model versions, etc. We denote Xe, Y e as the input and output data collected
from each environment e ∈ E . We can then similarly define the loss for each
environment Le(θ) as:

Le(θ) = E(xe∈Xe,ye∈Y e)�(fθ(xe), ye), ∀e ∈ E (2)

Invariant Risk Minimization searches for the invariant set of input attributes
across the different environments. As explained in Sect. 1, invariant features have
a strong causal relationship with the target variable for any given data, while
spurious features may have strong correlations with the target for some data
environments, but not in others. Formally, the set of invariant attributes XI is

110 P. Venkateswaran et al.

defined as one where the target prediction probability is consistent across all
environments (i.e.) p(Y |Xi ∈ XI , E) is approximately constant. Conversely, the
set of spurious attributes XS consists of features whose prediction probabilities
vary across environments due to the presence of spurious correlations. It follows
that XI ∪ XS = X, and XI ∩ XS = ∅, (i.e.) a feature cannot be both invariant
and spurious.

The IRM principle finds an invariant data representation Φ : X → H such
that the optimal predictive model with parameters θ : H → Y , is the same across
all environments ei ∈ E (i.e.) it is not influenced by variations from spurious
correlations. Hence, to find a model that optimizes the loss in each environment,
while simultaneously identifying invariant feature attributes across environments
requires solving the following bi-level optimization problem:

min
Φ:X→H
θ:H→Y

∑

e∈E
Le(θ�Φ(Xe)) (3)

s.t. θ ∈ argmin
θ̄

Le(θ̄�Φ(Xe)), ∀e ∈ E (4)

However, since this optimization is highly intractable, particularly when Φ is
non-linear, the authors in [2] propose a tractable variant:

min
Φ:X→Y

∑

e∈E
Le(Φ(Xe))
︸ ︷︷ ︸

IRM Loss

+λ‖∇θLe(θ�Φ(Xe)‖2
2︸ ︷︷ ︸

IRM Penalty

(5)

While training a predictive model using Eq. 5, the IRM Loss term minimizes
the training loss in each environment, while the IRM Penalty term balances
between the predictive performance of the model within each environment and
its invariance across environments using a regularizer λ ∈ [0,∞). This ensures
that a model does not get influenced by spurious correlations which may lead to it
performing well for some environments, but not in others. It is trained to balance
its performance across environments by identifying the invariant representation,
thus leading to robust and generalizable predictive models.

2.4 Sequence Prediction Neural Networks

Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) net-
works are popular predictive models for the sequential data in business process
event logs since they persist information across sequences unlike traditional neu-
ral networks. RNNs have a cyclic structure and can be unfolded as shown in
Fig. 1. At each step of the sequence, referred to as timestep t, xt is the input
and the ht is the hidden state which contains information extracted from all the
timesteps up to t. RNNs perform well for sequential data by sharing parameters
across different parts of the model. In an RNN, the hidden state ht is updated
using the previous hidden state and the current input at each timestep:

ht = f(Uxt + Wht−1 + b)

Robust and Generalizable Predictive Models for Business Processes 111

Then the output ot at time t is computed as:

ot = f(V ht + c)

where f is a non-linear activation function (e.g.) tanh or sigmoid, and U,W, V
are the weight parameters and b, c the biases of the new input and hidden state.
However, RNNs have been shown to perform poorly for long sequences and
retaining long-term dependencies, a phenomenon called catastrophic forgetting.

Fig. 1. Unfolding an RNN Fig. 2. LSTM vs RNN

Long Short-Term Memory (LSTM) architectures are a special kind of RNN
that solve this issue and can learn long-term dependencies. Unlike the single
layer of RNNs, LSTMs have four interacting layers as shown in Fig. 2. The
LSTM model can be described by the following equations where the � operator
denotes the Hadamard element-wise product:

ft = sigmoid(Wfxt + Vfht−1 + bf)
it = sigmoid(Wixt + Viht−1 + bi)
ot = sigmoid(Woxt + Voht−1 + bo)
Ct = ft � Ct−1 + it � tanh(Wcxt + Vcht−1 + bc)
ht = ot � tanh(Ct)

The LSTM first decides the information to remove from the cell state using the
sigmoid layer ft also known as the forget gate. It uses ht−1 and xt to output
a value between 0 and 1, where 0 denotes completely forgetting information,
while 1 denotes completely retaining it. This is followed by the input gate it
which decides which values to update and a tanh layer generates a vector of new
candidate values to be added to the state. The new cell state Ct is obtained
by forgetting some and adding new information. The output gate ot decides the
output of the cell state and also updates the hidden state ht.

3 Related Work

In this section we first discuss existing work on predictive models for business
processes. We then present related work on approaches for generalization of
machine learning models used in other domains.

112 P. Venkateswaran et al.

3.1 Predictive Models for Business Processes

The work by Evermann et al. [12] looks at next activity prediction using LSTMs
combined with an embedding layer to reduce the dimensionality of the input
data and include attributes like the resource associated with each event. Their
architecture comprises of the embedding layer with an embedding dimension of
125, followed by two LSTM layers.

Tax et al. [24] use an LSTM based architecture consisting of a shared LSTM
layer that feeds two independent LSTM layers, one specialized for predicting the
next activity, and the other for predicting the next event timestamp. Their model
jointly predicts both the activity and timestamp using a multi-task learning
approach, which they show has a better performance than learning each task
individually.

Camargo et al. [6] also use an embedding layer similar to [12] along with
two LSTM layers. They define the number of embedding dimensions as the
fourth root of the number of unique activities. Moreover, like [24] they also
use specialized layers for the activity and resource attributes and propose three
variants of the baseline architecture which concatenate information at different
points in the network and use a similar multi-task learning approach.

Mauro et al. [10] and Pasquadibisceglie et al. [18] use Convolutional Neural
Networks (CNNs) for the next activity prediction task. In CNNs, a convolutional
layer applies a set of filters that are replicated along the whole input to process
small local parts. These filters identify specific patterns or signals and the authors
propose schema to represent the running case as two-dimensional images.

Taymouri et al. [25] use Generative Adversarial Networks (GANs) for the
next activity and next timestamp prediction tasks. GANs are useful when the
amount of available training data is insufficient for effective training of LSTM
networks.

3.2 Generalization Approaches

There are various approaches to improving out-of-distribution generalization of
deep learning models. Data augmentation techniques aim to make the model
more robust by training using instances obtained from neighbouring domains
hallucinated from the training domains, and thus make the network ready for
these neighbouring domains. Shankar et al. [22] augment data using instances
perturbed along directions of domain change and use a second classifier to cap-
ture this. Carlucci et al. [7] apply augmentation to images during training by
simultaneously solving an auxiliary unsupervised jigsaw puzzle alongside.

Decomposition based approaches represent the parameters of the network as
the sum of a common parameter and domain-specific parameters during training.
Khosla et al. [14] applied decomposition to domain generalization by retaining
only the common parameter for inference. Li et al. [16] extended this work to
CNNs where each layer of the network was decomposed into common and specific
low-rank components.

Robust and Generalizable Predictive Models for Business Processes 113

Another approach is to pose the generalization problem as a meta-learning
task, whereby we update parameters using meta-train loss but simultaneously
minimizing meta-test loss. Santoro et al. [21] trained models that adapt using
small amounts of labeled data from the new domain, while Dou et al. [11] con-
sidered distribution shifts in only test data.

4 Our Approach

4.1 Data Preprocessing

In this section we describe our approach to preprocessing the event log to pre-
pare k-prefixes for the training and test data. For the predictive monitoring
tasks described in Sect. 2.2, the model has to learn a function that, given a k-
prefix σk

p = 〈ε1, ..., εk〉, predicts the next activity ak+1 and the next timestamp
tk+1 in addition to the other attributes djk+1, 1 ≤ j ≤ m. This process is
then performed recursively to obtain the activity suffix as well as to predict the
future timestamps to compute the remaining time of the case. For the times-
tamp attribute, we use the relative time between activities, calculated as the time
elapsed between the timestamps of the current event and its previous event.

The attributes in the prefixes can be categorical or continuous variables.
Continuous attributes are typically normalized between 0 and 1 before they
are passed as input to the neural network. There are several approaches in the
literature to encode a representation of categorical variables e.g. one-hot encod-
ing, label encoding, using embedding dimensions, etc. Authors in [6,12,17] used
label encoding followed by embedding dimensions to reduce the dimensions of the
input data, while authors in [9,24] use one-hot encoding. The choice of embed-
ding dimensions can impact accuracy, where a small number may not capture
feature relations, and a large number may cause model over-fitting. One-hot
encoding for features with many unique values, can result in high dimensional
input matrices, which can adversely impact model performance.

Since our focus in this work is on feature identification and distinguishing
between invariant and spurious features, we represent the categorical features
using label encoding which has been shown to perform well on ordinal data such
as those found in business process logs. This also ensures that we can handle
multiple attributes without a large increase in model complexity or the number
of parameters. We note that our approach can easily integrate other encoding
approaches as well.

In order to generate the k-prefixes, we use the popular prefix padding app-
roach also used by [6,9,10,18,24], where every possible set of prefixes σk

p is
considered, where 1 < k ≤ n. The prefixes are padded with zeroes in case they
are shorter than the specified vector length. Depending on the size of the dataset,
we either set n to be the length of the longest trace or use the n most recent
events. We also maintain a vector of lengths of each case which allows us to stop
predictions when the case is finished. Table 2 shows an example of the prepro-
cessed inputs, target features and timestamps for a given 4-prefix input. The φ
symbol denotes the end of the case.

114 P. Venkateswaran et al.

Table 2. Preprocessing of input k-prefix

Input 4-prefix Input features Input timestamp Target features Target

timestamp

〈(a1, 13/1/2021 00:15AM, d11, d12, d13), (1, 1, 1, 1) 0 (2, 1, 2, 1) 1500

(a2, 13/1/2021 00:40AM, d11, d22, d13), (2, 1, 2, 1) 1500 (3, 1, 5, 4) 2280

(a3, 13/1/2021 01:18AM, d11, d52, d43), (3, 1, 5, 4) 2280 (4, 2, 3, 1) 2700

(a4, 13/1/2021 02:03AM, d21, d32, d13)〉 (4, 2, 3, 1) 2700 φ φ

Fig. 3. RoGen training workflow

4.2 RoGen Model Architecture and Training Workflow

In this section, we describe RoGen’s model architecture and training workflow.
The model architecture consists of an input layer for the k-prefixes from event
logs. This is followed by two stacked LSTM layers as described in Sect. 2.4 and a
dense output layer. The output layer consists of outputs for predicting both the
next activity as well as the next timestamp. RoGen simultaneously optimizes
both tasks during training, also known as multi-task or multi-output learning,
similar to the approach of [6,24]. This allows RoGen to exploit commonalities
and differences across both tasks, which is often present in process trace logs
(e.g. activities and their time duration are typically correlated). This multi-task
optimization can result in improved training efficiency and prediction accuracy,
when compared to training models separately for each task as shown by [6,24].

Figure 3 shows the training workflow of our approach that uses Invariant Risk
Minimization (IRM) to train robust and generalizable models as described in
Sect. 2.3. The input k-prefixes from the event log are first split into the different
environments, which are further divided into training and test environments.
The input prefixes and target outputs for the different prediction tasks from
each training environment are then passed to the RoGen predictive model. The
training algorithm used by the model is detailed in Algorithm 1, where it uses
Eq. 5 to compute the training loss (IRM Loss) and penalty (IRM Penalty) for
each environment e ∈ E . The average loss and penalty over all environments
are used to optimize the RoGen model using the Adam optimization algorithm.
The trained model can then be used for inference on new k-prefixes for robust
predictions of future activities and their timestamps. Figure 3 also highlights

Robust and Generalizable Predictive Models for Business Processes 115

that the RoGen model can be easily replaced by any existing predictive model,
showing the extensibility of our approach.

Algorithm 1. RoGen Training Algorithm
Require: Distribution over inputs X and targets Y ;
Require: s: Total learning steps; fθ: function to learn
Require: w: Warm up steps; L: Loss function for the prediction error
Require: γ: Learning rate; r: Regularization weight; p: IRM Penalty weight
Require: θ: Model parameters ; μ: Mean function
1: for i = 1 → s do
2: Sample env e k-prefixes Xe, Y e = 〈xi, ...,xj〉, 〈yi, ...,yj〉 , ∀e ∈ E
3: le = Le(f(Xe), Y e) , ∀e ∈ E � IRM Loss for each environment
4: L2 = ‖θ‖2 � L2 regularization
5: lpen

e = IRMPenalty(Xe, Y e) , ∀e ∈ E � Equation 5
6: if i > w then
7: lfinal = μ(le) + rL2 + p(μ(lpen

e)) , ∀e ∈ E � Total loss
8: else
9: lfinal = μ(le) + rL2 , ∀e ∈ E

10: end if
11: θ = θ − γ∇θlfinal � Optimization
12: end for

5 Evaluation

We implemented RoGen in Python using PyTorch 1.7.0 and evaluated its per-
formance using five real-life event logs. We experiment using two versions of each
event log - first with the original data and attributes, and then augmenting it
with an additional spurious attribute to test the robustness and generalizability
of the approaches. Our code and data are available1.

We compared RoGen’s performance against four baselines [6,10,12,24] based
on their publicly available implementation. Furthermore, to highlight the exten-
sibility of our approach and evaluate its performance when applied to an existing
predictive model, we also incorporated the model by Camargo et al. [6] into our
training workflow in Fig. 3, which we named RoGen-C in the experiments. We
modified the baseline approaches to use the same set of log attributes to perform
a fair evaluation.

5.1 Experimental Setup

Datasets: We used five publicly available real-life event logs. Table 3 highlights
the characteristics of these logs and we describe them below.

1 https://github.com/praveenv/RoGenBPM.

https://github.com/praveenv/RoGenBPM

116 P. Venkateswaran et al.

Table 3. Event logs description

Event Log Num. traces Num. events Num. activities Avg. activities per trace Max. activities per trace Mean duration Max. duration

Helpdesk 4579 21344 14 4.66 15 40.9 days 59.9 days

BPI 2013 1487 6660 7 4.47 35 178.9 days 2254.8 days

BPI 2015 5647 262628 356 46.50 154 101.4 days 1512.0 days

BPI 2018 43809 2514266 41 57.39 2973 335.3 days 1011.3 days

BPI 2019 251734 1595923 42 6.34 990 71.5 days 25670.5 days

– Helpdesk:2 Contains traces from a ticketing management process of the
helpdesk of an Italian software company.

– BPI 2013:3 Contains traces from an incident and problem management sys-
tem at Volvo IT Belgium.

– BPI 2015:4 Consists of five event-logs containing traces from building permit
applications provided by five Dutch municipalities during a period of four
years.

– BPI 2018:5 Contains traces of payments for German farmers from the Euro-
pean Agricultural Guarantee Fund over a period of three years. Over the
years, there are changes in the process model due to changes in EU regula-
tions. The traces are from four different departments and each of them may
have implemented their processes differently.

– BPI 2019:6 Contains traces from an MNC in The Netherlands depicting
purchase order handling processes for paints and coatings with different flows
in the data. Since the BPI 2018 and BPI 2019 datasets are extremely large,
we use a random 10% sampling of data for our experiments.

Spurious Attribute and IRM Environments: To specifically evaluate the
robustness of all approaches, we augment every event log with an additional
numeric spurious attribute which is a common evaluation methodology [1,8,15].
We also divide the logs into environments for the IRM-based approaches. For
the Helpdesk, BPI 2013, and BPI 2019 event logs, we divide them into three
environments, two for training with 35% of data each, and the third as test with
the remaining 30%. For BPI 2015, we treat logs from each of the five munici-
palities as an environment, and use four for training and one as test. Similarly,
for BPI 2018, logs from the four departments are used as environments, and we
use three for training and one as test. This results in BPI 2015 and BPI 2018
having unequal sizes of each environment unlike the other logs, allowing us to
demonstrate the effectiveness of RoGen even with unbalanced data distributions.

2 https://doi.org/10.4121/uuid:0c60edf1-6f83-4e75-9367-4c63b3e9d5bb.
3 https://doi.org/10.4121/uuid:c2c3b154-ab26-4b31-a0e8-8f2350ddac11.
4 https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1.
5 https://doi.org/10.4121/uuid:3301445f-95e8-4ff0-98a4-901f1f204972.
6 https://doi.org/10.4121/uuid:d06aff4b-79f0-45e6-8ec8-e19730c248f1.

https://doi.org/10.4121/uuid:0c60edf1-6f83-4e75-9367-4c63b3e9d5bb
https://doi.org/10.4121/uuid:c2c3b154-ab26-4b31-a0e8-8f2350ddac11
https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1
https://doi.org/10.4121/uuid:3301445f-95e8-4ff0-98a4-901f1f204972
https://doi.org/10.4121/uuid:d06aff4b-79f0-45e6-8ec8-e19730c248f1

Robust and Generalizable Predictive Models for Business Processes 117

In each of the above logs, we identify three common case variants (denoted
as A, B, C) that have the highest occurrence rates in the event log. For each
environment e ∈ E , we define the spurious correlation between each variant
and a specific value Vi of the spurious feature (i.e.) p(A|V1, e) = p(B|V2, e) =
p(C|V3, e) = αe, where V1, V2, V3 are values of the spurious attribute and αe is
the strength of the spurious correlation in environment e. For every other case
variant, Vi is set to a random number. We set αe = 0.9 as the highest spurious
correlation in one of the training environments, and reduce it by 0.05 for every
subsequent training environment. We then set αe = 0.1 for the test environment.
We note that approaches that do not require explicit environment definitions can
also be used similarly [27].

In the training environments, we set a high value of αe to build a strong spu-
rious correlation between the common case variants and the spurious attribute.
However, in the test environment, for the spurious correlation to no longer hold,
we set a low value of αe to mimic a change in data distribution. As described
in Sect. 2.3, the varying values of αe for the spurious attribute in the training
environments is detected by IRM to identify the spurious correlation, and ensure
that the model does not get influenced by the spurious attribute. Models that
incorrectly get influenced by the strong spurious correlation in the training envi-
ronments, will fail to generalize to the test environment and hence demonstrate
low robustness. For training the baseline approaches, the training environments
are consolidated into a single input log.

Evaluation Metrics: We use the same evaluation metrics adopted in the base-
line comparison approaches [6,10,12,24]. For the next activity prediction task,
we use the percentage of correct predictions over the total number of predictions.
For the next timestamp prediction, we report the Mean Absolute Error (MAE)
which is the average of the absolute value difference between the predicted times-
tamps and the ground truth timestamps. For the activity suffix prediction, the
Damerau-Levenshtein (DL) edit distance metric is commonly used, which mea-
sures the edit distance between two given activity traces without penalizing too
harshly any transpositions of activities. This value is then normalized by the
lengths of the two traces, obtaining a similarity value between 0 and 1. For the
remaining time prediction of a case, we use the average of the MAE obtained
for all the recursive next timestamp predictions.

118 P. Venkateswaran et al.

5.2 Results

Table 4. Next activity prediction accuracy (%)

Method Helpdesk BPI 2013 BPI 2015 BPI 2018 BPI 2019

Orig. Gen. Orig. Gen. Orig. Gen. Orig. Gen. Orig. Gen.

Tax et al. [24] 78.94 65.07 58.99 46.27 38.66 9.85 68.63 35.04 56.75 35.15

Evermann et al. [12] 78.52 61.48 55.67 44.57 38.18 10.29 62.50 34.89 57.43 38.19

Mauro et al. [10] 79.30 61.70 51.29 41.35 35.02 6.43 64.32 34.33 63.43 39.70

Camargo et al. [6] 80.57 66.14 62.23 51.54 43.90 10.41 73.41 35.65 73.39 41.47

RoGen 80.37 71.06 61.18 56.75 47.48 33.37 74.20 56.25 74.07 66.43

RoGen-C 79.78 72.07 61.75 56.23 52.10 29.84 76.74 57.27 73.94 63.30

Next Activity and Timestamp Prediction: Table 4 shows the accuracy
percentages achieved by all the approaches in predicting the next activity for
both the original event logs (Orig.) as well as the logs with the additional spurious
feature (Gen.). For the original logs, we see that RoGen and RoGen-C achieve
comparable accuracies to [6] and outperform the other baselines across all the
event logs. We also observe that for BPI 2015 and BPI 2018, where the logs were
collected from multiple sources, treating them as separate environments using
IRM results in an increase in accuracy even when the underlying predictive
model is the same (RoGen-C and [6]).

For the logs with the spurious feature, our IRM based approaches outperform
all the baselines. We observe that the models of the baseline approaches are
influenced by the spurious correlations and have a significant drop in accuracy
ranging from an average of 19% for the Helpdesk dataset, to an average of 76%
for the BPI 2015 dataset. On the other hand, RoGen and RoGen-C are more
robust to the spurious correlation and do not have a large drop in accuracy.

Similarly, Table 5 compares the Mean Absolute Error (MAE) values of all
the approaches for the next timestamp prediction task. The MAE values are
reported in days and lower error values signify better performance. We only use
[6,24] as the baselines since [10,12] do not handle this task. We observe that
for a majority of both kinds of event logs – original and with the spurious fea-
ture, our approaches outperform the baselines. In particular, RoGen-C achieved

Table 5. Next timestamp prediction Mean Absolute Error (MAE)

Method Helpdesk BPI 2013 BPI 2015 BPI 2018 BPI 2019

Orig. Gen. Orig. Gen. Orig. Gen. Orig. Gen. Orig. Gen.

Tax et al. [24] 5.18 7.56 14.11 15.13 1.96 1.98 6.12 6.82 6.60 12.01

Camargo et al. [6] 4.99 7.35 16.35 14.50 1.92 2.03 5.31 6.78 6.36 11.20

RoGen 5.06 7.40 14.74 14.11 1.74 1.95 3.38 7.51 6.48 10.09

RoGen-C 4.95 7.19 15.37 11.87 1.92 1.94 4.90 7.48 5.88 9.63

Robust and Generalizable Predictive Models for Business Processes 119

consistently lower MAE than the other approaches for both kinds of logs. From
Tables 4 and 5, we can see that models using IRM do not degrade in accuracy
even if the logs do not have any spurious data correlations. In addition, when
spurious correlations exist in event logs, the IRM based models significantly
outperform traditional predictive models.

Fig. 4. Comparison of next activ-
ity prediction accuracy for varying
strengths of spurious correlation

Fig. 5. RoGen next activity prediction
accuracy for varying number of envi-
ronments

Impact of Strength of Spurious Correlations: To understand the impact
of the strength of spurious correlations in an event log on model performance,
we evaluate the approaches for varying strengths of spurious correlations αe in
each of the two training environments for the BPI 2019 event log. Figure 4 shows
the next activity prediction accuracy achieved by all the approaches where the
spurious correlation strength refers to the average spurious correlation μ(αe)
across the two training environments. We see that when there is no spurious
correlation (i.e.) μ(αe) = 0.0, all the approaches have accuracies similar to their
performance on the original event log as observed in Table 4. However, when
μ(αe) is increased, the baseline approaches are influenced by the spurious feature
and their test accuracy degrades. We observe for high levels of spurious corre-
lation, the baseline approaches have low accuracy values. On the other hand,
RoGen and RoGen-C show good robustness to the increasing levels of spurious
correlations and continue to perform well.

Impact of Number of Environments: We evaluate the scalability and
robustness of RoGen to multiple sources of spurious correlations, by varying
the number of training environments in Fig. 5. For each event log, we use the
same strengths of spurious correlation, but vary the number of environments
from {2, 4, 6, 8}. We observe that the accuracy achieved by RoGen does not
have much variance even with a larger number of environments. This shows that
our approach can handle large and diverse event logs with multiple sources of
spurious correlations.

120 P. Venkateswaran et al.

Suffix Prediction: Tables 6 and 7 show the results of the activity suffix pre-
diction and remaining time prediction tasks respectively. RoGen and RoGen-C
continue to outperform the baselines, particularly in logs with the spurious fea-
ture. For some of the logs, all the approaches achieve similar results since we
limited the number of future predictions due to the size of the log.

Table 6. Activity suffix prediction DL similarity

Method Helpdesk BPI 2013 BPI 2015 BPI 2018 BPI 2019

Orig. Gen. Orig. Gen. Orig. Gen. Orig. Gen. Orig. Gen.

Tax et al. [24] 0.75 0.68 0.33 0.19 0.14 0.03 0.15 0.06 0.18 0.07

Camargo et al. [6] 0.76 0.72 0.37 0.27 0.10 0.02 0.17 0.06 0.19 0.09

RoGen 0.76 0.72 0.38 0.32 0.14 0.09 0.17 0.13 0.19 0.16

RoGen-C 0.75 0.72 0.38 0.27 0.15 0.09 0.17 0.13 0.19 0.14

Table 7. Remaining time prediction MAE

Method Helpdesk BPI 2013 BPI 2015 BPI 2018 BPI 2019

Orig. Gen. Orig. Gen. Orig. Gen. Orig. Gen. Orig. Gen.

Tax et al. [24] 17.85 8.84 22.32 20.79 61.21 60.97 53.46 53.04 38.82 29.92

Camargo et al. [6] 18.35 9.21 23.92 20.94 60.93 60.97 53.40 52.51 38.53 28.69

RoGen 17.85 8.35 23.44 20.49 60.93 60.97 50.74 52.43 38.55 27.96

RoGen-C 17.40 8.03 23.09 20.05 60.93 60.97 51.29 52.00 38.48 27.76

6 Conclusion and Future Work

In this paper, we present a novel approach to train predictive models for busi-
ness processes that are robust and generalizable in the presence of spurious data
correlations. Existing work on predictive business process monitoring have not
accounted for the presence of spurious correlations in event logs which can arise
due to various factors. Since predictive monitoring tasks are often used by case
managers, deploying robust models is critical for many real-world business pro-
cesses.

Our approach uses the concept of Invariant Risk Minimization and we also
demonstrate how existing predictive models can utilize IRM to improve their
robustness. Our experiments highlight the importance of our approach, where
our robust predictive models outperform several existing baselines on real-life
logs, especially when they also have varying levels of spurious correlations. We
also show that our implementation can easily be used to improve the robustness
of any predictive model and our logs with spurious correlations can be used to
evaluate robustness.

Robust and Generalizable Predictive Models for Business Processes 121

We intend to extend our work to incorporate and compare other techniques to
achieve robustness like meta-learning, data augmentation, adversarial learning,
etc. We also plan to improve our approach to handle logs where the sources
of spurious correlations may be hard to identify. We also intend to evaluate
different kinds of predictive models in this context and also extend our approach
to handle other prediction tasks.

References

1. Ahuja, K., Shanmugam, K., Varshney, K., Dhurandhar, A.: In: In: ICML (ed.)
Invariant Risk Minimization Games, pp. 145–155. PMLR (2020)

2. Arjovsky, M., Bottou, L., Gulrajani, I., Lopez-Paz, D.: Invariant risk minimization.
Stat 1050, 27 (2020)

3. Beery, S., Van Horn, G., Perona, P.: Recognition in terra incognita. In: Proceedings
of the European Conference on Computer Vision (ECCV), pp. 456–473 (2018)

4. Bengio, Y., Deleu, T., Rahaman, N., et al.: A meta-transfer objective for learning
to disentangle causal mechanisms. In: ICLR (2019)

5. Bose, R.J.C., Van Der Aalst, W.M., et al.: Dealing with concept drifts in process
mining. IEEE Trans. Neural Networks Learn. Syst. 25(1), (2013)

6. Camargo, M., Dumas, M., González-Rojas, O.: Learning accurate lstm models of
business processes. In: International Conference on Business Process Management,
pp. 286–302. Springer (2019)

7. Carlucci, F.M., et al.: Domain generalization by solving jigsaw puzzles. In: CVPR,
pp. 2229–2238 (2019)

8. Choe, Y.J., Ham, J., Park, K.: An empirical study of invariant risk minimization.
arXiv preprint arXiv:2004.05007 (2020)

9. Di Francescomarino, C., Ghidini, C., Maggi, F.M., Petrucci, G., Yeshchenko, A.:
An eye into the future: leveraging a-priori knowledge in predictive business process
monitoring. In: Carmona, J., Engels, G., Kumar, A. (eds.) BPM 2017. LNCS, vol.
10445, pp. 252–268. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
65000-5 15

10. Di Mauro, N., Appice, A., Basile, T.M.A.: Activity prediction of business process
instances with inception CNN models. In: Alviano, M., Greco, G., Scarcello, F.
(eds.) AI*IA 2019. LNCS (LNAI), vol. 11946, pp. 348–361. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-35166-3 25

11. Dou, Q., de Castro, D.C., Kamnitsas, K., Glocker, B.: Domain generalization via
model-agnostic learning of semantic features. In: Advances in Neural Information
Processing Systems, pp. 6450–6461 (2019)

12. Evermann, J., Rehse, J.R., Fettke, P.: Predicting process behaviour using deep
learning. Decis. Support Syst. 100, 129–140 (2017)

13. de Haan, P., Jayaraman, D., Levine, S.: Causal confusion in imitation learning.
arXiv preprint arXiv:1905.11979 (2019)

14. Khosla, A., Zhou, T., Malisiewicz, T., Efros, A.A., Torralba, A.: Undoing the
damage of dataset bias. In: European Conference on Computer Vision, pp. 158–
171. Springer (2012)

15. Krueger, D., Caballero, E., Jacobsen, J.H., et al.: Out-of-distribution generalization
via risk extrapolation (rex). arXiv preprint arXiv:2003.00688 (2020)

16. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Deeper, broader and artier domain
generalization. In: Proceedings of the IEEE International Conference on Computer
Vision, pp. 5542–5550 (2017)

http://arxiv.org/abs/2004.05007
https://doi.org/10.1007/978-3-319-65000-5_15
https://doi.org/10.1007/978-3-319-65000-5_15
https://doi.org/10.1007/978-3-030-35166-3_25
http://arxiv.org/abs/1905.11979
http://arxiv.org/abs/2003.00688

122 P. Venkateswaran et al.

17. Lin, L., Wen, L., Wang, J.: Mm-pred: A deep predictive model for multi-attribute
event sequence. In: Proceedings of SDM, pp. 118–126. SIAM (2019)

18. Pasquadibisceglie, V., Appice, A., Castellano, G., Malerba, D.: Using convolutional
neural networks for predictive process analytics. In: ICPM, pp. 129–136 (2019)

19. Piratla, V., Netrapalli, P., Sarawagi, S.: In: ICML (ed.) Efficient Domain Gener-
alization via Common-Specific Low-Rank Decomposition, pp. 7728–7738. PMLR
(2020)

20. Recht, B., Roelofs, R., Schmidt, L., Shankar, V.: Do imagenet classifiers generalize
to imagenet? In: ICML, pp. 5389–5400. PMLR (2019)

21. Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., Lillicrap, T.: Meta-learning
with memory-augmented neural networks. In: International Conference on Machine
Learning, pp. 1842–1850 (2016)

22. Shankar, S., Piratla, V., Chakrabarti, S., Chaudhuri, S., Jyothi, P., Sarawagi,
S.: Generalizing across domains via cross-gradient training. arXiv preprint
arXiv:1804.10745 (2018)

23. Srivastava, M., Hashimoto, T., Liang, P.: In: In: ICML. (ed.) Robustness to Spu-
rious Correlations via Human Annotations, pp. 9109–9119. PMLR (2020)

24. Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process mon-
itoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017.
LNCS, vol. 10253, pp. 477–492. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-59536-8 30

25. Taymouri, F., Rosa, M.L., Erfani, S., Bozorgi, Z.D., Verenich, I.: Predictive busi-
ness process monitoring via generative adversarial nets: the case of next event
prediction. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020.
LNCS, vol. 12168, pp. 237–256. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-58666-9 14

26. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain
adaptation. IEEE CVPR (2017)

27. Venkateswaran, P., Muthusamy, V., Isahagian, V., Venkatasubramanian, N.:
Environment agnostic invariant risk minimization for classification of sequential
datasets. In: Proceedings of the 27th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, p. To appear (2021)

http://arxiv.org/abs/1804.10745
https://doi.org/10.1007/978-3-319-59536-8_30
https://doi.org/10.1007/978-3-319-59536-8_30
https://doi.org/10.1007/978-3-030-58666-9_14
https://doi.org/10.1007/978-3-030-58666-9_14

	Robust and Generalizable Predictive Models for Business Processes
	1 Introduction
	2 Background
	2.1 Event Logs, Traces, and Sequences
	2.2 Predictive Monitoring Tasks
	2.3 Neural Networks and Invariant Risk Minimization
	2.4 Sequence Prediction Neural Networks

	3 Related Work
	3.1 Predictive Models for Business Processes
	3.2 Generalization Approaches

	4 Our Approach
	4.1 Data Preprocessing
	4.2 RoGen Model Architecture and Training Workflow

	5 Evaluation
	5.1 Experimental Setup
	5.2 Results

	6 Conclusion and Future Work
	References

