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Abstract—Community water networks have become increas-
ingly prone to failures due to aging infrastructure, resulting in
an increased effort to instrument and monitor networks using
IoT (Internet of Things) sensors. However, identifying optimal
locations to instrument these sensors to detect and localize
failures such as leaks is challenging due to the growing scale
and complexity of water networks. Current sensor placement
algorithms use heuristics that focus mainly on enabling network
coverage. In this paper, we propose a multilevel approach to
model and quantify the real-world impact of a failure on a
community using various geospatial, infrastructural and societal
factors. We present techniques to integrate failure impact, IoT
sensing data, and simulation based analytics to drive two novel
sensor placement algorithms with the objective of reducing
community-scale impact. We evaluate our proposed algorithms
on various failure scenarios using multiple real-world water net-
works at different scales and compare them to existing solutions.
The experimental results show that the proposed algorithms
result in sensor placements that can achieve an 80% reduction in
impact while using a comparable number of sensors for diverse
real-world networks.

I. MOTIVATION

Community water networks are critical infrastructure re-

sponsible for the supply, distribution, and storage of water

resources. In addition to the various societal water needs,

the presence of a resilient water infrastructure is important

to service continuity of other lifelines and domains such as

power, sanitation, agriculture, healthcare and manufacturing.

Today, with widespread urban development and population

growth, community water networks have grown in scale

and complexity. This, combined with the fact that water

infrastructure is often decades old, has made the networks

increasingly vulnerable to failures. Pipe leaks or breaks can

result from stress caused by various factors such as corrosion,

pipe displacements, extreme weather, disaster events, etc.

Failures in water networks can have significant impact

on community infrastructures and processes. They can cause

economic losses by damaging property and create clean water

shortages in places where there is a critical need. Large pipe

leaks, or breaks, typically result in an outflow of water to the

surrounding region inconveniencing citizens. They can also

cause localized flooding which may result in soil erosion,

sink holes, or ponding of water. [1], [2]. This may lead

to heavy economic damage as water floods into homes and

buildings, or cause mud and debris flows which can affect

the functioning of the community by disrupting transportation,

civic amenities, educational institutions, local businesses, etc.

Urban development and the lack of proper planning can further

exacerbate the effects of flooding. For instance, paved streets

and roads (because of their impervious surfaces) can increase

the volume and speed of flowing water, reduce infiltration of

water into the ground, and accelerate runoff to ditches and

streams which can result in flooding[3], [4]. This can also

lead to health and security issues through the introduction and

propagation of contaminants in the network. Pipe leaks are

also costly in terms of energy consumption due to the need

to pump additional water to service the affected zones[5]. The

water seepage from pipe bursts can result in cascading effects

and impact other infrastructures such as nearby industries,

transportation, and healthcare among others. It is therefore

essential to have an effective methodology in place to monitor

water networks and quickly identify failures, in particular,

those that disrupt and endanger societies at large.

Today, water networks are predominantly monitored to

gather usage statistics for billing purposes. Utilities typically

take a reactive approach to failures and analyze the metering

data to identify differences in the amount of water supplied and

consumed to infer the presence of leaks. Also, since the major-

ity of water pipes are below ground, agencies rely on external

reports, (e.g.) through human observations, to gain knowledge

about failures. This results in delays in initiating the process

of leak detection, namely the identification of failure locations

and their severity. Common methods used to locate leaks

include the use of acoustic listening devices [6][7][8], ground

penetrating radar, or even physical inspection[9], [10]. Utilities

also complement meter readings with hydraulic simulations to

isolate leaks[11], [12]. These approaches are computationally

expensive, slow and exhibit low detection accuracy in large-

scale water networks with multiple leaks [13]. Research ef-

forts to deploy low cost sensors to monitor water networks

include PIPENET[14] in USA, WaterWise[15] in Singapore,

and WaterBox[16] in UK. However, the inherent scale of

today’s water networks means that instrumenting the entire

network with these sensors would be prohibitively expensive,

thus calling for selective placement solutions.

We argue that an intelligent sensor placement methodology

is important for rapid and cost effective identification of

failures throughout the network. In this paper, we propose

to drive sensor placement decisions in community water

networks based on the impact that failures would have on the

community at hand. Leveraging prior community knowledge,

we specifically focus on pipe leaks (or bursts) in the water dis-

tribution network as the key failure mode to design intelligent

sensor placement strategies.
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In contrast to current placement approaches that are cov-

erage based and treat all leaks uniformly, our approach is

based on identifying the needs of the community and the

impact of leaks. There are three key observations that drive

our impact-driven approach to instrumenting water networks.

Firstly, while detecting all leaks is important, not all leaks are
equally impactful. For instance, a leak affecting a hospital

is more critical to identify rapidly as compared to a leak

affecting a household. Secondly, leaks affecting the same com-

munity may have different outflows and hence have different
severity. Finally, diverse communities may be vulnerable to
different extents to leaks based on their location, structure,

demographics, built infrastructure, urbanization, etc.

Contributions. The novelty of this work lies in the uniquely

structured geosocial approach for sensor placement that is con-

textualized to community-scale water distribution networks. A

novel aspect of our approach is to combine sensing, simula-

tions and geospatial information sources to (a) characterize

the unique impact of each leak event and (b) use this to drive

sensor placement for the community at hand. Specifically, in

this paper we make the following contributions:

• We present a methodology to model community vulnera-

bility that takes into account various geophysical, societal,

demographical and topological factors. (Section II)

• We propose a novel approach to incorporate these geo-

social correlations to characterize impact into the sensor

placement decision making process. (Section III)

• We present an approach that combines impact, sensing

data, and simulation engines developed by domain ex-

perts to explore a range of sensor placement choices.

(Section III)

• We propose two novel sensor placement algorithms that

are driven by impact. (Section IV)

• We perform extensive evaluations of the proposed algo-

rithms using 3 real-world water networks. (Section V)

II. IMPACT OF PIPE FAILURES: A GEOSOCIAL APPROACH

In this section, we further develop the notion of community

impact due to failures in the water network. We argue that

a comprehensive approach to sensor placement must consider

a range of socioeconomic and geospatial factors and discuss

how this differs from prior approaches to instrument the water

infrastructure. Specifically, we discuss the various geophysical,

infrastructural, economic and societal factors that should be

considered while modeling impact. We categorize these factors

as follows:

• Terrain and Topography: Terrain is a major factor in deter-

mining the direction and speed of water flow. For instance, the

flow of water would be faster down a slope than along a flat

terrain. Also, the flow of water from a leak at a higher elevation

can affect regions that are downstream. Hence, modeling the

terrain elevation and gradient is important to determine the

regions that would get affected in the event of a leak.

• Leak Characteristics and Network Structure: Modeling

the outflow of water from a leak or break is essential to

determine the extent of flooding. The outflow rate can depend

on various factors such as the size of the leak, water pressure,

pipe elevation, type of soil surrounding the pipe, etc. The

impact of a failure would also depend on the topology of the

water network (e.g.) a failure upstream at a central distribution

hub would have more impact on the community than a failure

at an end node in the network.
• Population Scale and Demographics: The societal impact

of a leak or break is closely related to the scale of population

that it affects. Failure events in a population center would

cause a larger disruption to the community than in a region

of low population density. It is also important to understand

the demographics of the region while modeling impact, since

a failure affecting an old-age home or a school could have

a high impact. Another factor is system redundancy. If no or

little redundancy (alternative water supplies or conduits) exists,

then the impact on the affected population would be higher.
• Economic Impact: The outflow of water from leaks can

disrupt other lifelines and services and cause significant dam-

age to property. Modeling the monetary costs associated with

recovery and reconstruction activities can be used to model the

impact of a leak (i.e.) disruption of services can affect local

businesses, thus causing secondary losses to the community.
• Cascading Effects: There is a potential for leaks to cause

cascading failures in other high risk infrastructure. The seep-

age of water into nearby chemical or other industrial plants can

result in additional damage that could be exponentially more

than the damage from flooding alone. An example of this type

of cascading failure was observed during Hurricane Harvey

this year[17] when a chemical plant in Crosby, Texas lost

electrical power from backup generators because of flooding

which eventually caused several explosions and ensuing fires.

In addition to modeling the geospatial aspects of failure,

sensor placement methods must capture temporal metrics,

i.e. detection time while modeling impact, and consequently

response to failures. Our goal is to design sensor placement

techniques that ensure adequate coverage of high impact

regions (spatial aspect) with low detection times (temporal

aspect). In the remainder of this paper, we aim to answer

the following questions. How do we define and quantify the

spatio-temporal factors of impact accurately and meaning-

fully? How can we use these factors to model the vulnerability

of a community? How do we use the notion of impact to

drive sensor placement in order to minimize the effects of

pipeline failure and disruption? Our approach, (See Fig.1),

is to first model the water network and simulate various

failure scenarios to capture the detection capabilities of the

network. We then model the community structure based on

the topography, infrastructure and demographics. We then use

these models to determine the vulnerability of the community.

We simulate the effects of flooding and utilize this to model

the impact caused. We finally use this impact model to drive

the placement of sensors.
Related Research: Existing research on instrumenting wa-

ter networks, has focused on (a) measuring water quality and

(b) leak detection. Typical heuristics used to design sensor

placement for contaminant detection aim to optimize factors
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Fig. 1: Solution Workflow for Impact Driven Sensor Placement Architecture

such as detection time, affected population, likelihood of

detection, etc. These include graph theoretic approaches[18],

[19] that utilize shortest path and set cover variants as well as

optimization methods using mixed integer programming [20],

[21] that typically work for small networks. Challenges such

as the Battle of Water Sensor Networks (BWSN) [22] have

resulted in more efficient approximation methods [23] that

scale to larger networks. Typical leak detection techniques use

network coverage as the prime objective to design placement

heuristics. Deterministic methods like Branch-and-Bound can

guarantee optimal solutions[24] for limited scale. Techniques

utilizing genetic algorithms can scale [25], but have long

runtimes and are hard to tune. Approximate solutions include

the Greedy approach [26] which is not effective in localizing

leaks and the recent Augmented Greedy approach [27].

In our recent work [28], we designed and built a cyber-

physical-human middleware, AquaSCALE, for gathering, an-

alyzing and localizing failures in community water services. In

contrast to previous approaches that addressed single leak fail-

ures, [10], [29], [30], we developed solutions to the multiple-

leak localization problem, by leveraging dynamic data from

multiple information sources (e.g. IoT devices, weather, social

media reports). Since the focus of [28] is to address the

multiple-leak localization problem, the placement techniques

are simple and limited to a clustering based approach that

does not take leak impact into account. In contrast, this

paper provides a more in-depth, holistic and practical solution

to the sensor placement problem by systematically utilizing

multiple geo-social factors (e.g. hospitals and schools are

critical infrastructures and need better instrumentation). Mod-

eling the various influencing factors to represent ”impact”

comprehensively is the topic of the next section.

III. MODELING COMMUNITY IMPACT

In this section, we provide a detailed formulation of our

proposed methodology for modeling the factors influencing

impact. We denote the set of potential sensor locations as

S = {s1, s2, ..., sn} and the set of potential failure (i.e., pipe

leak) locations as L = {l1, l2, ..., ln} where si refers to a

sensor placed at location i and lj refers to a leak at location

j. Without loss of generality, we assume that leaks occur at

pipe junctions and that all junctions can be instrumented with

sensors (i.e) |S| = |L|. This can easily be extended to cases

where leaks occur in both junctions and pipes, as well as

cases where sensors can be placed only in certain locations by

increasing or decreasing S and L. We also use a sample water

network (Fig. 2(a)) with 7 junctions as a running example to

illustrate our approach. The notations used in this paper have

been summarized in Appendix A.

Fig. 2: Running Example - (a) sample water network, (b)

terrain and triangular grid, (c) outflow from leak at junction 1

and (d) critical infrastructure locations.
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A. Community Structure Modeling

Modeling the structure and vulnerability of a community is

important to accurately determine the impact of leaks. Since

leaks can affect different parts of the community, we partition

the community into regions and model the relative criticality

of these regions. In practice, the partitioning of regions is

typically driven by flood maps which depend on the terrain.

We build a grid by dividing the terrain of the community area

into triangular regions using a delaunay triangulator, Triangle

[31]. We use triangular rather than rectangular grids because

they allow for localized grid refinement and easily conform

to terrains with irregular shapes [32]. We denote the set of

triangular regions as Δ = {�1,�2, ...,�n}. We then build

an elevation map for the area based on the elevation of the

vertices of the triangular regions in Δ. Fig. 2(b) shows the

triangular regions and the terrain elevation map for the sample

water network.

We then identify the boundary coordinates of each of these

regions, and determine their relative criticality based on the

population density as well as the critical infrastructure present

within the region. Some categories of critical infrastructure

that we have considered include healthcare, transportation,

government facilities, educational, etc. We assign relative

importance scores to each of these categories and compute

the sum of the scores of the infrastructure present within each

region.

Definition.(Region Criticality) We denote the criticality of a

region �k by η(�k) and compute it as -

η(�k) = λ1Pop(�k) + λ2Infra(�k) (1)

where Pop(�k) is the normalized population density and

Infra(�k) is the normalized sum of infrastructure scores of

the region �k and λ1, λ2 are weights that can be adjusted

to reflect the relative importance of population density and

infrastructure.

Example: From Fig. 2(d) we can see the locations of some

critical infrastructure (hospital, school, airport) to which we

assign scores of {10, 7, 9} respectively. For this example we

assume that the populations of all the regions are the same.

We can hence determine η(Δ) for the 5 regions (�) in Fig.

2(b) as {0.9, 1, 1, 0.7, 0} respectively.

B. Water Network and Failure Modeling

A community water network can be represented by a graph

G(V,E), where the vertices V represent nodes and pipe

junctions, and the edges E represent links (pipes, valves, and

pumps). Pipe leaks cause a disturbance in the flow of water

in the network, which moves through the system as a pressure

wave with high velocity [33]. During a leak, the cross-sectional

area of the leak orifice increases. From Bernoulli’s equation,

we get that p
ρ+

v2

2 +gz=const, where p is the pressure, ρ the

water density, g the acceleration due to gravity, z the elevation,

and v the velocity of water which is inversely proportional

to the cross-sectional area. This means that since the cross-

sectional area of the leak orifice is lesser than that of the pipe,

the leak velocity increases. From the equation, since velocity

is inversely proportional to pressure, this increase in velocity

results in a pressure drop. This implies that pipe bursts can be

identified by detecting changes in the hydraulic pressure [27].

Definition.(Outflow Rate) The outflow rate of water from a

leak can then be computed as -

Q = Ec × pβ (2)

where Q is the outflow rate from the leak, Ec is the effective

leak area of the orifice, p is the pressure head at the leak and

β is a constant [34].

C. Failure Sensitivity Modeling

Since the disturbance caused by a pipe leak dissipates with

distance, the associated pressure change may manifest itself

at only a certain number of junctions in the network. There

is also a time delay associated with this pressure change that

increases with distance from the leak. Hence, the placement

of a sensor would be sensitive to a subset of leak events

L ⊆ L within a certain time period. Our goal is to determine

whether a sensor at location si can detect a leak at lj , and

if so, the corresponding detection time. In order to model

leak sensitivity, we run simulations on a hydraulic simulator

EPANET [35] which simulates the hydraulic behavior within

pressurized water distribution pipe networks. Similar to [28],

we enhance EPANET to support the placement of IoT devices,

introduction of leaks, and the measurement of time taken for

leak propagation. We introduce leaks by adding emitter devices

which model the outflow of water through an orifice using

(2) and measure leak propagation time using the structural

properties of the input water network, namely pipe lengths

and the flow rates.

Using EPANET, we first instrument all the potential sensor

locations (S) and introduce a leak in each of the potential leak

locations (L) one at a time. For each introduced leak lj ∈ L,

we monitor the pressure values at every sensor location si ∈ S
to determine if si can detect lj within the simulation time

period. As in [36] we build a detection capability matrix Mdc

where the rows represent the potential sensor locations and the

columns represent the potential leak locations. The entries of

the matrix are binary valued (0 or 1) depending on whether a

given leak results in a pressure change at a sensor. We denote

the observed pressure values over time at location si as pi
under normal conditions, as p̂i after the leak is introduced,

and set a detection threshold ε. Then the value of the matrix

at location si for leak lj can be determined as:

Mdc[si, lj ] =

{
1, if pi − p̂i ≥ ε

0, otherwise
(3)

In addition to the detection capability matrix, we build the

corresponding detection time matrix Mdt which reflects the

time taken for a sensor location to detect a leak. The time

value is bounded by the specified simulation time period. In

the case where the sensor is incapable of detecting the leak, we

set the value of the corresponding entry to be infinity. Hence,

the entries of the detection time matrix can be computed as -
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Fig. 3: Detection capability, Detection time, and Flood level matrices for Running Example

Mdt[si, lj ] =

{
δ(si)lj , if Mdc[si, lj ] = 1

∞, otherwise
(4)

where δ(si)lj is the time taken for sensor si to detect lj
measured in minutes. Using Mdc in conjunction with Mdt

allows us to localize leaks by using the relative time difference

in detection of leak events by sensors using sufficiently high

sensing rates.

Example: For the sample network in Fig. 2(a), we introduce

a leak at each of the 7 junctions one at a time. We run the

simulation on EPANET and obtain the detection capability and

detection time matrices (Mdc and Mdt in Fig. 3). For each

leak, the differing detection time values reflect the time delay

in propagation of the leak event.

D. Modeling Flood Levels

Given a set of failures, their impact on the community

is dependent on the water outflow and seepage from the

leaks. In order to model the vulnerability of a community to

flooding, we simulate the outflow of water from a leak as

well as its propagation along the surrounding terrain using a

hydrodynamic flood simulation algorithm BreZo [37].

For each leak lj ∈ L introduced earlier, we compute its

outflow rate using Equation (2) and then run the BreZo simu-

lation, providing as input the terrain elevation, triangular grids,

leak location and the outflow rate. The simulation returns the

regions affected by flooding and their corresponding flood

levels. We use this to build a flood level matrix Mfl with the

potential leak locations as the rows and the triangular grids

as the columns. Mfl[lj ,�k] thus reflects the flood levels in

region �k due to a leak at location lj . The entries of the flood

level matrix can be computed as -

Mfl[lj ,�k] =

{
0, if leak at lj does not impact �k

H(lj)�k
, otherwise

(5)

where H(lj)�k
denotes the maximum flood level at �k due

to a leak at lj . Fig. 2(c) shows the simulation of water outflow

from a leak at junction 1 along the terrain map.

Example: We simulate the outflow of water from a leak at each

junction in the sample water network (Fig.2(a)). We obtain the

following flood level matrix (values in ft) where we restrict

the columns to only the triangular regions marked in Fig.2(b)

(Mfl in Fig. 3). The large impact of l1 on its immediate

surroundings is reflected by the higher flood levels in �1 and

�2.

E. Impact Modeling of Failures

The notion of impact of leaks, which we denote as IL, can

be thought of from two viewpoints -

1) Nodal Impact: The impact that a particular leaking

node/junction has on the surrounding regions. For a

given leak lj , this involves identifying the regions �k ∈
Δ such that Mfl[lj ,�k] > 0 and then obtaining the

criticality of those regions (η(�k)).
2) Regional Impact: The impact caused to a particular

region by leaks at different nodes. For a given region

�k, we determine the leak locations lj ∈ L such that

Mfl[lj ,�k] > 0 and determine the levels of flooding.

In both these cases, we see that IL depends on the criticality

of the regions and the corresponding flood levels. In the next

section we present two approaches to instrument sensors that

are driven by each of the above viewpoints.

IV. SENSOR PLACEMENT : PROBLEM AND ALGORITHMS

The effectiveness or utility of a sensor placement depends

on the impact resulting from the time taken to detect leaks

by the sensors in the placement. As discussed in Section II, a

good placement is one that can quickly detect leaks that have

high impact. We can define this as :

Definition.(Overall Utility) Given a sensor placement set P ⊆
S of sensor locations, we define its overall utility U(P) as

IL/min(Mdt[P,L]), where min(Mdt[P,L]) is the shortest

detection time of leaks lj ∈ L by the sensors si ∈ P .

For each sensor si ∈ S , we define Ci ⊆ L as the set of leaks

covered by sensor si and Ccov as the set of leaks covered by

all the sensors in the placement set (i.e.) Ccov=
⋃
Ci, ∀si ∈

P . The objective of the impact-driven placement problem is

to then identify a minimum cardinality sensor placement set

P ⊆ S that maximizes the overall utility U(P), while also

ensuring that when a leak lj ∈ L occurs, there exists at least

one si ∈ P that can detect lj
When there exist leaks that cannot be detected by any of the

potential sensor locations, a maximum coverage (detecting all

leaks) would not be possible and hence a maximal coverage

is defined to be the set of all detectable leaks. The simplified

version of the impact-driven placement problem is when the

impact of all leaks is the same which is equivalent to the

maximum coverage problem that can be defined as -

Definition.(Maximum Coverage Problem) Given a number |S|
and the collection of sets C={C1, C2, ..., Cn}, the maximum

coverage is to find a subset C′ ⊆ C such that |C′| ≤ |S| and

|⋃Cj∈C′ Cj | is maximized.
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In this definition, if S is the set of potential sensor locations

and each Ci is the set of leaks covered by si, finding Ccov=L
is a solution to the MCP and hence shows the equivalence.

MCP is NP-hard[38] and hence finding a solution to the impact

driven placement problem is also computationally complex.

In this section, we describe two novel approximate solutions

driven by the Nodal Impact and Regional Impact viewpoints.

A. Max Nodal Impact

In this algorithm, we first determine the utility of adding a

sensor to the existing sensor placement set P . We then select,

in each iteration, the sensor location with the largest utility,

until all the detectable leak locations have been covered. The

utility of adding a sensor to the existing placement depends

on how quickly it can detect leaks and the resulting impact in

terms of flood levels and criticality of the affected regions.

Definition. (Leak Utility) We denote the utility of placing a

sensor at si for a given leak lj as its leak utility Ulj (si). The

overall utility of sensor si, U(si), is then the sum of all its

leak utilities which we compute as follows -

1) We use the detection capability matrix Mdc to determine

the set of leaks that si can detect. For each of these leaks,

we use the detection time matrix Mdt to determine

whether si can detect the leak quicker than the sensors

in the existing placement set since the impact of a leak

depends on the earliest time of detection.

2) For each of the leaks that si detects faster, we determine

the criticality of the regions that the leak affects (η(Δ))
as well as the corresponding flood level using Mfl. We

then compute the impact of leak lj as Ilj=η(�k) ×
Mfl[lj ,�k], where k represents the affected regions.

3) To compute the leak utility of si for lj , we divide the

leak impact by the corresponding time taken by si to

detect the leak (i.e.) Ulj (si)=Ilj /Mdt[si, lj ]. Hence a

sensor capable of detecting a high impact leak quickly

would have a larger utility.

4) We finally compute the overall utility of sensor si as the

sum of its individual leak utilities. U(si)=ΣUlj (si).

As described in Algorithm 1, in a given iteration, the sensor

location with the maximum utility score (sv) is added to the

placement set P and the set of covered leaks is updated to

Ccov∪Cv . We recompute the scores for each iteration until all

detectable leaks are covered (Ccov=L). Since every detectable

leak has at least one sensor that covers it, the algorithm is

guaranteed to complete. The running time of the algorithm is

a function of the number of sensors, leak locations, and regions

O(|S||L||Δ|), which would result in long runtimes for large

scale networks with numerous junctions and pipes. However,

we can use the property of submodularity to significantly

reduce the number of function evaluations thus reducing

runtime [39], [40].

Definition. (Submodularity) A set function F on a finite set

N is submodular if for all subsets P ⊆ Q ⊆ S and elements

s ∈ S , it satisfies F (P ∪ s)−F (P) ≥ F (Q ∪ s)−F (Q).
Hence the marginal utility of adding s to the smaller set P

is greater than adding it to Q. In the context of leak detection,

Algorithm 1 Max Nodal Impact (MNI)

1: Input: S,L,Δ, η,Mdc,Mdt,Mfl, {C1, C2, ..., Cn}
2: Output: P ⊆ S
3: Initial Conditions: P = ∅, Ccov = ∅
4: while Ccov �= L do
5: for i = 1→ |S| do
6: if si ∈ P then continue end if
7: for k = 1→ |Ci| do
8: Ulk (si)=0
9: if Mdc[si, lk]=1 & Mdt[si, lk]<min(Mdt[P, lk]) then

10: for j = 1→ |Δ| do
11: Ilk = η(�j)×Mfl[lk,�j ]
12: Ulk (si) += Ilk /Mdt[si, lk]
13: end for
14: end if
15: end for
16: U(si)=ΣUlk (si)
17: end for
18: sv = {si :max(U(si)), ∀i : 1→ |S|}
19: P ← P ∪ sv , Ccov ← Ccov ∪ Cv

20: end while

this means that as the coverage of leaks by the sensors in

the placement set increases, the marginal utility of adding a

sensor decreases. To utilize submodularity, we note that the

leak utility of a sensor placement is a function of the leak

utilities of its sensor locations (Ulj (P) = max(Ulj (si)), si ∈
P). Also, for a given leak, the relative utility of two sensor

placements depends on how fast they detect it. Hence the leak

utility function has the following properties - (1) it is non-

negative (Ulj (P) ≥ 0, ∀P), (2) it is non-decreasing (i.e.) for

placements P ⊆ Q ⊆ S , Ulj (P) ≤ Ulj (Q). We can then

show that -

Theorem 1. The leak utility of a sensor placement Ulj (P) is
submodular.
Proof - Let P and Q be two sensor placement sets such that

P ⊆ Q ⊆ S . Consider a leak lj ∈ L that can be detected by

sensor si ∈ S \Q. Depending on the detection time, there are

three cases -

(1) Mdt[si, lj ]≥min(Mdt[P, lj ]): From this we get

that min(Mdt[P ∪{si}, lj ]) =min(Mdt[P, lj ]) and

min(Mdt[Q∪{si}, lj ]) =min(Mdt[Q, lj ]) and hence

Ulj (P ∪ {si})−Ulj (P) = Ulj (Q ∪ {si})−Ulj (Q) = 0.

(2) min(Mdt[Q, lj ]) ≤ Mdt[si, lj ] < min(Mdt[P, lj ]):
This implies Ulj (Q ∪ {si})=Ulj (Q) and hence Ulj (P ∪
{si})−Ulj (P) ≥ Ulj (Q ∪ {si})−Ulj (Q).

(3) Mdt[si, lj ] < min(Mdt[Q, lj ]): Here, Ulj (P ∪ {si}) ≥
Ulj (Q∪{si}) and Ulj (P) ≤ Ulj (Q) due to the non-decreasing

property of Ulj . Hence, we get Ulj (P ∪ {si}) − Ulj (P) ≥
Ulj (Q ∪ {si})−Ulj (Q).

Since the overall utility is a summation of the leak utili-

ties, it is also submodular. As with the maximum coverage

problem, our greedy approach gives an approximation ratio

of (1−1/e)[40]. Then similar to [27], if in a given iteration

of the algorithm, U(s1) ≥ U(s2) ≥ U(s3) ≥ ..., then s1
would be added to the placement. Then in the next iteration if

U(s2) ≥ U(s3), we can conclude that U(s2) ≥ U(si), ∀i ≥ 3,
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thus reducing the number of evaluations which ensures the

scalability of the algorithm.

B. Max Regional Impact

Algorithm 2 Max Regional Impact (MRI)

1: Input: S,L,Δ, η,Mdc,Mdt,Mfl, {C1, C2, ..., Cn}
2: Output: P ⊆ S
3: Initial Conditions: P=∅, Ccov=∅, L′=L
4: Q = descendingSort(η(�k)), ∀�k ∈ Δ
5: while Ccov �= L do
6: �i = Q.pop()
7: lv={lj :max(Mfl[lj ,�i]), ∀j : 1→ |L′|}
8: sv={sk :max(Ulv (sk)), ∀k : 1→ |S|}
9: P ← P ∪sv , Ccov ← Ccov ∪Cv , L′ ← L′ \ lv , Q.push(�i)

10: end while

In this algorithm, we prioritize the placement of sensors to

ensure that the impact on high criticality regions is minimized.

We iterate over regions ordered by their criticality and in

each iteration, we identify the leak location having the largest

impact on the region and then select the sensor location with

the largest utility for this leak. We again denote Ccov as the

set of leaks covered by sensors in the existing placement P
to which we add sensor locations as follows -

1) We first order the set of regions, Δ, in descending order

of their criticality score η(Δ). We push the ordered

regions into a queue Q such that the first element of

the queue is the region with the highest criticality score.

2) We pop the topmost region of the queue, �k, and

identify the leak location lv which impacts it the most

using Mfl.

3) We then identify the sensor location sv with the largest

leak utility for lv (i.e.) max(Ulv (si)), ∀si ∈ S , where

Ulv (si)=Ilv/Mdt[si, lj ]. We add sv to P and update the

set of covered leak locations as Ccov ∪ Ci and remove

lv from subsequent iterations.

4) We push �k to the back of the queue and repeat this

process till all the leak locations are covered (Ccov = L).

This ensures that whenever a region is popped, at

least one detectable leak location gets covered, thus

guaranteeing that the algorithm will complete.

In order to ensure the efficiency of the algorithm described

in Algorithm 2, for each region, we pre-order the leak locations

based on their impact and the sensors based on their detection

time for each leak. This ensures that the operations to identify

the leak with the largest impact and the sensor with the largest

leak utility are both constant. Though unlikely in practice, the

worst case scenario is when each sensor can detect at most

one leak, thus leading to a time complexity of O(|L|).
V. EXPERIMENTAL STUDY

In this section, we test our proposed algorithms on three

real-world water networks and compare their performance to

two existing coverage-based approaches - Greedy[26] which

selects in each iteration, the sensor with the maximum cov-

erage, and Augmented Greedy[27] which iteratively selects

sensors by scoring them on their ability to distinguish between

leak events. We use the following networks - (1) a subzone

of the Washington Suburban Sanitary Commission’s (WSSC)

water service area in Montgomery County, Maryland [28],

(2) a model for the Wolf-Cordera Ranch (WCR) in Colorado

Springs, Colorado, and (3) the Richmond water distribution

system, part of the Yorkshire water supply area in the U.K.

The data for (1) was obtained from WSSC while (2) and (3)

from [41]. The layouts of the networks are shown in Fig. 4.

Fig. 4: Partial water network layouts of Washington DC

(WSSC), Colorado (WCR) and Richmond (Richmond), with

their bounding boxes and critical regions (�)

A. Methodology to Model Impact

In order to model the impact of leaks to drive sensor

placement, for each network we first determine a bounding box

of the area they service. Due to privacy and security reasons,

water agencies typically mask such information and hence we

make an approximate determination. We then build the terrain

elevation map for these areas using elevation data from[42],

[43] and obtain population density information using census

data from [44]. We extract the coordinates of critical infras-

tructure within the bounding box using the OpenStreetMap

service [45]. We use this obtained population density and

location of critical infrastructure to model impact as described

in Section III. We show the bounding box and the top three

critical regions for each of the networks in Fig. 4.

B. Sensor Placement Performance Comparison

We obtain the sensor placements determined by the four

algorithms - Greedy(G), Augmented Greedy(AG), Max Nodal

Impact(MNI), and Max Regional Impact(MRI) - for each of

the water networks and compare their performance in detecting

leaks by simulating the following failure scenarios:

• Randomized Failures: We introduce leaks in randomized

locations ranging from 5% to 50% of the network’s junctions.
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Fig. 5: Summary of number of sensors placed and average

normalized performance across all networks for the three

failure scenarios (10% leak events)

• Critical Failures: We introduce leaks in critical locations

ranging from the top 5% to 30% of leak locations ordered by

impact.

• Geo-correlated Failures: We introduce leaks in spatially

clustered locations ranging from 5% to 50% of the network’s

junctions where the number of leaks in each cluster is uniform.

We present the results of the randomized and geo-correlated

failure scenarios as the average of multiple runs so as to

remove any bias arising from the choice of leak locations.

We then evaluate the algorithms using the following metrics:

Average Detection Time: We compare the average leak de-

tection times of the algorithms for the above failure scenarios.

For each introduced leak, we determine the quickest time taken

for its detection by the sensor locations in each algorithm’s

placement set and compute the average of these quickest

times for all the leaks in the scenario. Fig. 6a shows the

comparison of the normalized average detection times. We

observe that while the Augmented Greedy approach has low

average detection times in general since it uses the most

number of sensors, it is outperformed by the Max Regional

Impact approach for smaller geo-correlated leaks and by both

our proposed approaches in detecting highly critical leaks.

Average Impact Caused: The impact caused by a leak is

proportional to the time taken to detect it. We compare the

performance of the algorithms based on the average impact

caused in each failure scenario. For each introduced leak, we

determine its leak impact (Ilj ) as described in Section IV-A

and multiply it by the corresponding time taken by the sensor

placements to detect the leak. We then compute the average

impact caused over all the introduced leaks. The normalized

average impact caused for the different algorithms are shown

in Fig. 6b. We observe that across all the scenarios, the Max

Regional Impact approach results in the lowest average impact

followed by the Max Nodal Impact, Augmented Greedy and

Greedy approaches. We see in particular, that the performance

of the Max Regional Impact approach is significantly better

for highly critical leaks.

Cost Effectiveness: Since the cost of instrumenting sensors

is non-trivial, a good placement of sensors is one that ensures

low impact of leak events while being cost effective. We

determine the cost effectiveness of a placement as a product of

the average impact caused and the number of sensors placed.

We show the normalized cost effectiveness of the algorithms

in Appendix B and observe that the cost effectiveness of the

Greedy and Augmented Greedy approaches are comparable,

as are the Max Nodal Impact and Max Regional Impact

approaches.

C. Limiting the Number of Sensors

To evaluate the performance when using a limited number

of sensors, for each algorithm, we vary the number of sensors

from 10% to 100% of its original value. We then determine

the leaks covered by the sensors and compare the total impact

of these leaks. While the Greedy and Augmented Greedy

approaches have more coverage using limited sensors, our

proposed approaches cover more high impact leaks (Fig. 7).

D. Max Nodal Impact vs. Max Regional Impact

Our earlier experiments show that the better performance of

MRI compared to MNI can be attributed to the larger number

of sensors it instruments (Fig. 5). In this section, we perform a

sensitivity analysis using the WSSC water network to explore

the influence of the following factors -

Density of Critical Areas: The vulnerability of a community

is closely tied to its most critical regions. Typically, there exist

clusters of regions with high criticality such as a population

center with infrastructure like hospitals, fire stations, and

schools or an industrial zone with multiple critical facilities.

We determine the influence of the criticality of these regions

as well as their spatial distribution on the performance of

the algorithms. For the WSSC network, we initially set the

criticality of all regions to 0 and randomly reassign the top 100

original criticality scores while forming spatial clusters, such

that the number of regions in the clusters vary from 1 to 10 and

vary the criticality from 10% to 100% of the original value.

From Fig. 8, we see that the number of sensors placed by the

MNI approach increases for low cluster sizes and criticality

values. On the other hand, for a given cluster size, the MRI

approach returns the same number of sensors, and the number

decreases as cluster size increases. The MNI approach is thus

useful when there are a small number of large critical clusters.

Intensity of Flooding: In order to determine the influence

of intensity of leak events on sensor placement, we vary the

outflow rate from each of the introduced leaks in Section III-C

from 50% to 100%. We then compare the number of sensors

placed in each case and determine the corresponding average

impact as before. Fig. 9 shows that for low outflow rates,

a similar number of sensors are placed by both approaches,

thus resulting in comparable average impacts. However, as

the outflow rate increases, the MRI approach places a larger

number of sensors thus resulting in a lower average impact as

compared to the MNI approach. This however means that the

MNI approach is useful for limited budgets.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we proposed to drive sensor placement for

leak detection based on the notion of impact of a leak on

the community. We presented a methodology to characterize

and quantify the factors influencing impact, and to incorporate

them into the sensor placement decision making process. We

presented two novel sensor placement algorithms driven by
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(a) Average detection time

(b) Average impact caused by failures

Fig. 6: Comparison of (a) average detection time and (b) average impact caused by failures as a function of number of leaks

for randomized, critical, and geo-correlated leak events

Fig. 7: Total impact of covered leaks as a function of number of sensors
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Fig. 8: Number of sensors placed as a function of region criticality and cluster

size for (a) Max Nodal Impact and (b) Max Regional Impact approaches.

Fig. 9: Number of sensors and average impact

caused as a function of the leak outflow rate

impact and evaluated their performance on real-world water

networks. As part of our future work, we intend to model

the interaction between multiple leaks and to explore other

approaches to model the factors influencing impact such as

different ways to define regions and their criticality.
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APPENDIX

A. Table of Notations used in the paper

S Set of potential sensor locations
si Sensor at location i
L Set of potential leak locations
lj Leak at location j
Δ Set of all triangular regions

�k kth triangular region

η(�k) Criticality of the kth triangular region

Mdc Detection capability matrix
Mdt Detection time matrix
Mfl Flood level matrix
Ilj Impact of leak at lj
Ci Set of leak locations covered by sensor at location i

Ccov Set of leak locations covered by the sensor placement
P Set of sensor placements
Ulj Leak Utility

U Total utility

B. Cost Effectiveness Experiment

Fig. 10: Comparison of cost effectiveness as a function of number of leaks for randomized, critical, and geo-correlated leak

events
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