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ABSTRACT
Instrumenting water distribution networks with sensors for moni-
toring is critical to maintain adequate levels of water quality and
quantity. Existing efforts to detect and localize adverse events in
the network have explored either installing in-situ sensors on junc-
tions or deploying a number of mobile sensors through pipes. These
approaches have high costs, low sensing accuracy, lack sufficient
coverage or provide intermittent monitoring. In this paper, we
combine the benefits of in-situ and mobile sensing with various
geosocial factors to develop a cost-effective hybrid monitoring ar-
chitecture that minimizes the impact of adverse water events on
the community. The architecture can adaptively adjust sensing
resolutions on-demand within the network, determine required
sensing capabilities based on the event, and respond to varying
event severities. We propose a two-phase planning and deploy-
ment approach that first integrates network structure, event, and
community information with simulation based analytics to deter-
mine locations to install in-situ sensors and mobile sensor insertion
infrastructure. We then incorporate network flow information to de-
termine mobile sensor deployment locations and volume to quickly
localize detected events to minimize their impact. We evaluate our
approach using multiple real-world water networks for adverse
water quality and loss events and compare it to existing approaches.
Our results show that our proposed approach can achieve upto
79% reduction in impact with upto 68% greater cost efficiency com-
pared to approaches using traditional coverage heuristics, and upto
30% reduction in impact while being upto 52% more cost efficient
compared to approaches that attempt to minimize impact.
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1 INTRODUCTION
Water distribution networks (WDNs) constitute one of the most
critical urban infrastructures and are an important community
lifeline. The monitoring of water networks is essential to ensure
the availability of sufficient quantity and quality of water. Today’s
water networks are often decades old, and their growing scale and
complexitymake them increasingly vulnerable to adverse events [1].
Large pipe failures or leaks and the introduction of contaminants
are the most common events affecting the quantity and quality
of water in WDNs. Pipe leaks can result from stress caused by
factors such as corrosion, pipe displacements, extreme weather,
disaster events and can cause contaminants like nitrates, metals,
and pesticides from the soil to enter the water pipelines through
backflows [5]. The impact of physical damages to the infrastructure
and compromises to the quality of suppliedwater can be devastating
to society and cause huge economic and public health issues such
as massive flooding, outbreak of waterborne epidemics, shortages
of clean drinking water, damage to property, etc [28]. Having an
effective methodology in place to monitor water networks is thus
essential to localize and resolve these adverse events, in particular,
those that disrupt and impact the community at large.

There have been several efforts towards instrumenting water
distribution networks with sensors to detect and localize events
in a timely manner. Some systems like PIPENET [26], WaterWise
[30], WaterBox [10], and AquaSCALE [8], install in-situ or static
sensors to measure network parameters like pressure, flow rate,
turbidity, etc to detect the occurrence of events. Figure 1(a) shows
the WaterWise multi-sensor probe that holds several commercial-
off-the-shelf sensors for hydraulics and is inserted into the flow on
pressured pipes. Static sensors provide continuous monitoring with
one time installation and continuous communication costs. High-
end static sensors provide deterministic performance, larger sensing
ranges, and good accuracy. However, they are expensive (> $1000)
[32] and the instrumentation of civic water infrastructures at large
requires significant investments (millions of dollars).

Systems like SmartBall [6] and PipeProbe [12] drop mobile sen-
sors into the network which traverse and monitor pipes by moving
with the water flow. Figure 1(b) shows the deployment of a Smart-
Ball into a water pipe. Mobile sensors detect events by traversing
near them while flowing through the pipes and incur operational
costs in terms of the manual effort or automated infrastructure
required to deploy or retrieve them. Operating mobile sensors typi-
cally incurs lower cost than trenching and installing static sensors
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to retrofit existing pipe networks. Mobile sensors also allow for
adaptive sensing on-demand as sensors can be deployed at different
locations, at different times, and with different sensing capabilities
based on the need. However, they do not provide continuous mon-
itoring and have low sensing ranges. They also require a larger
number of sensors since they have probabilistic movement through
network junctions, and also need infrastructure support for their
insertion into the network.

Figure 1: (a) WaterWiSe in-situ probe (b) SmartBall mobile
deployment

In this paper, we propose to leverage the advantages provided by
static sensors (continuous monitoring, sensing range, accuracy) and
those by mobile sensors (adaptive sensing, on-demand monitoring,
low cost) to develop a hybrid (i.e. in-situ and mobile) sensing archi-
tecture to provide adaptive monitoring of water networks. Our goal
is to first plan and augment the placement of in-situ sensors with
mobile sensor insertion infrastructure to quickly detect adverse
events in the network and then determine locations from which
to deploy mobile sensors to localize these events. Since the impact
of events on the community are tied to their severity and the time
taken to localize them, our planning and deployment methodology
needs to be able to quickly detect and localize high impact events.
In this paper, we focus on large pipe failures and contamination
events.

There has been work on combining in-situ and mobile sensing
in smart cities for pollution monitoring [15], community data col-
lection [33], public safety [14] etc. However, achieving this in water
networks presents several challenges - (1) Most of the network
infrastructure is below ground, making it hard to deploy and oper-
ate sensors and involves other engineering efforts like developing
mobile sensor insertion infrastructure, (2) The movement of mobile
sensors is constrained by the direction and speed of the water flow
that change over time, and (3) Communication is a challenge in
underground networks where wireless networks suffer from atten-
uation while wired approaches require much cost and effort. Our
contributions in this paper are as follows -
•Wepresent a novel hybrid architecture that leverages the strengths
of both in-situ and mobile sensors and combines it with various

community geosocial factors to provide real-time adaptive moni-
toring of underground water distribution networks (Section 2).
•We design approaches to model the components of the architec-
ture, the occurrence and propagation of events, and their resulting
impact on the community structure (Section 3).
•We develop novel algorithms to (a) perform network planning
to determine the placement of static sensors and mobile sensor in-
sertion infrastructure and (b) determine mobile sensor deployment
locations with the goal of reducing costs and ensuring low com-
munity impact while maintaining event detection and localization
accuracy (Section 4).
•We evaluate the performance of our proposed hybrid architec-
ture on three real-world water networks from Maryland, Colorado,
and Richmond, and perform comparisons with existing approaches
in detecting dynamic events resulting in the loss of water qual-
ity/quantity (Section 5).

2 HYBRID ADAPTIVE MONITORING
ARCHITECTURE

In this section, we present our hybrid (in-situ plus mobile) archi-
tecture for the adaptive monitoring of water networks as shown in
Figure 2. The physical infrastructure consists of the water distribu-
tion network, the surrounding community structure and the sensor
deployments. In-situ or static sensors are installed on the pipes in
contact with the water flow. Mobile sensors on the other hand, are
inserted into, and extracted from the water flow through points
that we denote as Insertion/Extraction (I/E) points. These could be
manhole covers, fire hydrants or other specialized infrastructure.
While the measurements from static sensors are uploaded as con-
tinuous data streams, the data from mobile sensors are uploaded
once they are extracted at an (I/E) point.

Our system architecture has two phases. The first phase involves
network planning where we leverage network information, commu-
nity structure (terrain, population, locations of key infrastructure),
and event propagation models in order to model the impact of
different events occurring at various locations in the network on
the surrounding community. We then use these impact models to
drive our planning algorithm to determine the locations for urban
planners and water agencies to install static sensors and mobile
sensor (I/E) points. The static sensors continuously monitor the
water network and whenever they detect the occurrence of a pipe
failure or contamination event, they determine a region of interest,
which constitutes a subset of junctions and pipes where the sen-
sors believe that an event has occurred. In the second phase, we
determine the Insertion/Extraction points from which to deploy
mobile sensors to quickly cover the region of interest so as to ensure
the minimal impact of events on the surrounding community.

The adaptive monitoring capabilities of our hybrid architecture
results from (a) the ability to dynamically adjust the sensing res-
olution of different areas of the network on-demand through the
deployment of mobile sensors, (b) being able to pick and choose
the exact sensing capabilities (sensing rate, types of sensors) of
the mobile sensors required to localize each event based on the
input provided by the static sensor deployment, and (c) catering to
the severity of different events by incorporating information from
static sensors to determine the number of mobile sensors required



Augmenting In-situ with Mobile Sensing for Adaptive Monitoring of WDNs ICCPS ’19, April 16–18, 2019, Montreal, QC, Canada

Figure 2: Hybrid Adaptive Monitoring Architecture

to provide adequate coverage and measurements from the region of
interest.
Related Work. Existing work on combining mobile and in-situ
sensor deployments in water networks typically assume the prior
placement of static infastructure - either static sensors [18, 19,
22] that cover a predetermined portion of the network, or sink
nodes/beacons [4, 27] in the junctions that communicate with the
mobile sensors, with the objective of determining the number of mo-
bile sensors needed and their release locations to cover the network.
However, we argue that it is essential to consider the deployment
of both types of sensors simultaneously since the placement of
one type directly affects the performance of the other. Also, these
prior approaches assume that all events are uniform and do not
distinguish between them. However, (1) different events can im-
pact a community in different ways and require unique sensing
capabilities, (2) events of the same type can have varying severity,
and (3) different communities can be impacted to differing extents
by the same event based on their location, structure, demograph-
ics, built infrastructure, urbanization, etc. In our previous work
[29], we developed a methodology to localize pipe failures using
static sensors by characterizing the differing impacts caused by
leaks on the community. We showed how this impact-driven ap-
proach can ensure low impact of pipe leaks on the community.
However, our scope was limited to static sensor deployments and
our methodology was tailored to failure detection. In contrast, this
paper presents a more general adaptive monitoring framework for
water distribution networks leveraging the strengths of both in-situ
and mobile sensing and provides more cost-effective planning and
deployment solutions to model and mitigate the impact of both
failure and contamination events.

3 MODELING THE NETWORK, EVENTS AND
ASSOCIATED COMMUNITY IMPACT

In this section, we describe our methodology for modeling the
various components of the proposed hybrid infrastructure, the
occurrence and propagation of contamination and failure events,
the community structure and the associated impact of these events.

3.1 Modeling Infrastructure Components
Since the propagation of different events is dependent on the net-
work flow, an event may manifest itself at only a subset of junctions
in the network. There is also a time delay associated with the
manifestation that increases with distance from the event source.
Therefore, it is important to model the water network and the sens-
ing capabilities of both types of sensors to ensure the continuous
monitoring of the network and the timely detection and localization
of events. We use a hydraulic simulator EPANET [23] developed by
the United States Environmental Protection Agency, which simu-
lates the hydraulic behavior within pressurized water distribution
pipe networks, to model the sensing capabilities of the sensors.
Modeling theWater Network: Awater distribution network can
be represented as a graph, where the vertices represent nodes and
junctions, while the edges represent links (pipes, valves, and pumps).
We denote the set of potential locations for the occurrence of event
E in the network as E = {e1, e2, ..., en }, where ej refers to an
event occurring at location j. We also define the set of potential
static sensor locations and mobile sensor Insertion/Extraction points
as Sstat = {sstat1 , sstat2 , ..., sstatn } and Smob = {smob

1 , smob
2 , ...,

smob
n } respectively, where sstati , smob

i refer to a static sensor and an
(I/E) point at location i respectively. There could be locations deep
underground where installing in-situ sensors is not possible but
could be reached by mobile sensors deployed from existing (I/E)
infrastructure. Similarly, there could be places where installing
specialized (I/E) infrastructure is infeasible due to network access
or cost, where in-situ deployments are more useful. Figure 3 shows
a sample water network with five nodes that we use as a running
example to illustrate our modeling approach.

Figure 3: Running example of water network with its (a) el-
evation map and (b) key infrastructure information

Figure 4: Running examplematrices for event detection and
sensing capabilities of (a) static sensors and (b) mobile sen-
sors, (c) Determining event propagation

Modeling In-Situ Sensors: In our hybrid architecture, the static
sensors are responsible for detecting the occurrence of any event
and determine a region of interest by continuously monitoring the
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network. An event would cause static sensors to return measure-
ments depending on their ability to detect the event. The combi-
nation of these measurements can be used to identify junctions
possibly affected by the event and hence track its propagation. Our
goal is to then determine the potential event locations ej ∈ E that
can be detected by each static sensor location sstati ∈ Sstat and
the corresponding time taken to do so. To do this, we introduce an
event at each potential location (E) in EPANET. We then determine
the sensor locations that can detect each event by monitoring the
values of the requisite hydraulic variables for the event (pressure
change for failures and contaminant concentration for contamina-
tion events). We build a detection capability matrix Mdc , where
the rows represent the potential static sensor locations and the
columns represent the event locations. The entries of the matrix
are binary valued (0 or 1) depending on whether the static sensor is
capable of detecting the event [21]. We denote the observed values
of the hydraulic variable under normal conditions as vi and as v̂i
once the event is introduced. We also set a detection threshold ϵ
for each event. Then the values ofMdc for a particular event can
be computed as -

Mdc [s
stat
i , ej ] =

{
1, if vi − v̂i ≥ ϵ

0, otherwise

We then store the corresponding time taken for the static sensors
to detect an event in a detection time matrixMdt as -

Mdt [s
stat
i , ej ] =

{
η(sstati )ej , ifMdc [s

stat
i , ej ] = 1

∞, otherwise

where η(sstati )ej is the time taken for a static sensor sstati to detect
an event at ej measured in seconds. The values of Mdt are set
to infinity for the locations where a static sensor is incapable of
detecting the event.
Example. The detection capability and detection time matrices in
Fig. 4(a) show the capability of static sensors to detect failures in
the sample network. For instance, a static sensor at junction 1 can
detect a leak at junction 2 with a delay of 12 seconds.
Modeling Mobile Sensors: Once the static sensors determine a
region of interest, the mobile sensors are then deployed in order to
localize the event. Since the mobile sensors flow along with the
water, at each junction that connects multiple pipes, a mobile sensor
may flow into any one of the outlet pipes. Thus, sensors released at
the same time and location can take a number of possible traversal
paths. We account for this uncertainty by adopting a probabilistic
approach to model the flow of mobile sensors in the network [27].

At each junction, we assign the probability of the sensor flowing
through an outlet pipe connecting junction i and j as pi j=fi j/Ti ,
where fi j is the flow rate through the outlet pipe andTi is the total
flow rate out of junction i . We maintain this junction-to-junction
transition probability information in a matrix (M)which reflects the
probability that a mobile sensor at junction i would reach junction
j in a single step. This also implies that the probability of a mobile
sensor from junction i reaching junction k after two steps can be
computed as pik=

∑
j pi j∗pjk for all intermediate junctions j , which

translates to computing M2. We repeat this for n steps until there

are no more transitions (i.e., all the probabilities are 0) and create a
traversal probability matrix as -

T =

n∑
k=1

Mk , such thatMn = 0 (1)

where 0 denotes the zero matrix and each entry of T denotes
the probability of a mobile sensor traversing from one junction to
another in any number of steps. Our goal is to then translate these
probabilities into finding the number of mobile sensors required to
traverse a junction with a minimum coverage probability pc . This
can be modeled as a binomial distribution b(n,p), where p is the
probability that a mobile sensor will traverse to a junction, (1 − p)
the probability that it will not, and n the number of mobile sensors
deployed. Hence, the probability that nomobile sensorswill traverse
to a junction can be represented as (1−p)n . We defineA as the event
in which at least one mobile sensor traverses to a given junction.
Our goal is to then determine n such that Prob(A)=Prob(1−A′)=1−
(1 − p)n ≥ pc . We thus obtain -

n ≥

⌈
ln(1 − pc )
ln(1 − p)

⌉
(2)

We see that for low traversal probabilities, a larger number of
mobile sensors need to be deployed. We then use Equation (2) to
build a traversal capability matrix Mtc where the rows denote
the potential mobile sensor (I/E) points (Smob ) and the columns
denote the event locations (E). The entries ofMtc represent the
minimum number of mobile sensors required to traverse to each
event location with probability pc -

Mtc [s
mob
i , ej ] =

{
nei ej , if T[smob

i , ej ] > 0
∞, otherwise

We also build the corresponding traversal time matrixMt t using
the network flow rate information as the time taken for the mobile
sensor to traverse from one junction to another.

Mt t [s
mob
i , ej ] =

{
θ (smob

i , ej ), ifMtc [s
mob
i , ej ] , ∞

∞, otherwise

where θ (smob
i , ej ) is the time taken for a mobile sensor to traverse

from mobile sensor location smob
i to event location ej as a sum

of the time taken to traverse each intermediate pipe which we
compute using the flow rates and pipe lengths.
Example. Fig. 4(b) shows the traversal capability and traversal
time matrices for mobile sensors in detecting contamination events
in the sample network. We see that traversing from junction 1
to junction 2 requires at least 7 mobile sensors to achieve a 95%
coverage probability and they take 44 seconds to reach junction 2.

3.2 Modeling Events - Water Quality and
Quantity

The occurrence of different events in the network can result in mul-
tiple hydraulic variables being affected. It is therefore important to
accurately model the events to determine the manner of propaga-
tion of each event. Since different events can affect different parts
of the community, we partition the community into smaller regions
using a delaunay triangulator, Triangle [25]. Triangular grids allow
for localized grid refinement and can easily conform to terrains



Augmenting In-situ with Mobile Sensing for Adaptive Monitoring of WDNs ICCPS ’19, April 16–18, 2019, Montreal, QC, Canada

with irregular shapes [2]. We denote the set of triangular regions
as ∆ = {△1,△2, ...,△n }. We use EPANET to model the occurrence
and propagation of contamination and failure events.

3.2.1 Contamination Events. In contamination events, a dissolved
contaminant travels down the network with the same average
velocity as the carrier fluid while at the same time reacting (either
growing or decaying) at some given rate. Hence, contamination
events can be detected by monitoring the chemical concentration
levels in the water. We assume that at junctions, the mixing of fluid
is complete and instantaneous.
Definition.(Contaminant Spread) The spreading of contaminants
in the network can be computed as -

∂Ci
∂t
= −ui

∂Ci
∂x
+ r (Ci ) (3)

where Ci is the concentration in pipe i as a function of distance
x and time t , ui is the flow velocity in pipe i and r is the rate of
reaction as a function of concentration [23].
Contamination levels The degree of contamination at each junc-
tion is an important factor to consider while measuring the impact
of a contamination event on the community. People consuming
water from a contaminated junction within a region would be ad-
versely affected. We measure this using EPANET by injecting a
contaminant at each potential event location ej ∈ E and simulating
its spread throughout the network using Equation (3). We then
build a contaminant level matrixMcl where the rows and columns
correspond to the contamination event locations (E) and the trian-
gular regions (∆) respectively. We compute the entries ofMcl as
-

Mcl [ej ,△k ] =

{
0, △k does not consume from ej

C(ej )△k , otherwise

where C(ej )△k denotes the concentration levels at △k due to the
contaminant intrusion at ej .

3.2.2 Failure Events. Physical infrastructure failures, such as pipe
leaks/breaks, cause a disturbance in the water flow resulting in a
pressure wave that moves through the network with high velocity
[16]. Past work has shown that the the velocity of water exiting from
the leak orifice is faster thanwithin the pipe causing a pressure drop,
implying that pipe bursts can be identified by detecting changes in
hydraulic pressure [20, 29].
Definition.(Outflow Rate) The outflow rate of water from a leak
can then be computed as -

Q = Ec × p
β (4)

where Q is the outflow rate from the leak, Ec is the effective leak
area of the orifice, p is the pressure head at the leak and β is a
constant [13].
Flood levels One of the main factors influencing the impact of
pipe failures on the community is the flooding resulting from water
outflow and seepage from leaks. We capture this by simulating
the outflow of water from a leak as well as its propagation along
the surrounding terrain using a hydrodynamic flood simulation
algorithm BreZo [24]. We simulate leak events in EPANET by in-
troducing emitters. We then compute the outflow rate for each leak

event ej ∈ E using Equation (4) and provide this as input to the
BreZo simulator in addition to the triangular regions (∆) and the
leak location (ej ). The BreZo simulator returns the regions affected
by flooding and the corresponding flood levels. We use this informa-
tion to build a flood level matrixMf l consisting of the leak event
locations as the rows and the triangular regions as the columns.
The entries ofMf l can be computed as -

Mf l [ej ,△k ] =

{
0, leak at ej does not impact △k
H (ej )△k , otherwise

where H (ej )△k denotes the maximum flood level at △k due to a
leak at ej .
Example. For the sample network, we measure the effects of failure
and contamination events introduced at each junction for four
triangular regions denoted by △ in Fig. 3(a). The resulting flood and
contamination level matrices are shown in Fig. 4(c).

3.3 Modeling Community Structure and Event
Impact

Estimating the impact of any event in the network on the commu-
nity requires developing a model of the community structure. We
then extract the following community information from each of
the triangular community regions (∆) -
1) Critical Infrastructure: We use mapping services to identify
the presence of critical infrastructure such as healthcare, transporta-
tion, government facilities, education, etc within the boundaries of
each region and assign relative importance scores to each of these
categories. We then compute the critical infrastructure score △infk ,
of region △k , as the sum of the scores of the infrastructure located
in △k .
2) Population Information: We obtain the population density
information of each of the triangular regions using census data and
denote it as △popk .
3) Elevation Information: We build elevation maps for each of
the triangular regions as the average elevation of its vertices and
denote it as △elek .
4) Demand:We determine the average consumption of water by
each triangular region △k by averaging the total supply through
each of the network junctions in △k , and denote this by △demk .
Example. Figure 3(a) shows the triangular grids and the terrain
information used to obtain △elek while Figure 3(b) shows the pres-
ence of critical infrastructure around the water network to compute
△
inf
k .
Measuring the impact of an event on the community (IE ) is

dependent on the type of event that occurs in the network. Here,
we present our methodology for measuring the impact of both pipe
failures and contamination events.
Impact of Pipe Failures A large pipe failure can cause flooding
in the surrounding area, thus affecting the population present as
well as the functioning of critical infrastructure. We thus compute
the impact of a leak event at location j on region △k as -

Ileakej =Mf l [e
leak
j ,△k ] ∗ (△

pop
k + △

inf
k ) (5)
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whereMf l [e
leak
j ,△k ] is the level of flooding caused by the leak

event, △popk is the population density, and △infk is the critical in-
frastructure score of the region.
Impact of Contamination Events The impact of a contamina-
tion event would depend on the amount of contaminated water
consumed as well as the number of people consuming the water.
We estimate the impact of a contamination event at location j on
region △k as -

Icontej =Mcl [e
cont
j ,△k ] ∗ (△

pop
k + △demk ) (6)

whereMcl [e
leak
j ,△k ] is the contamination levels caused by the

event, △popk is the population density, and △demk is the consumption
demand of the region.

4 NETWORK PLANNING AND DEPLOYMENT
ALGORITHMS

As described in Section 2, given a water network, our proposed
architecture determines the placement of static sensors and Inser-
tion/Extraction points to quickly identify the regions of interest and
then identifies the deployment locations of mobile sensors to pro-
vide rapid localization of events. In this section, we present our
network planning and deployment algorithms. The goal of our plan-
ning algorithm is to simultaneously determine locations to place
both static sensors and mobile sensor Insertion/Extraction points
while providing high utility and incurring low costs. We define a
sensor placement P to consist of a set of static sensor locations and
mobile sensor (I/E) points (i.e.) P ⊆ (Sstat

⋃
Smob ). The utility

of a placement can be measured in terms of the impact caused by
events in the network due to the delay in their detection and local-
ization. A sensor placement that provides high utility is thus one
that 1) quickly detects and localizes high impact events, 2) results
in low overall impact on the community, and 3) incurs low costs.

We denote Cstati ,Cmob
i as the set of event locations (E) that can

be detected by a static sensor placed at, or traversed to by mobile
sensors deployed from location i respectively. We also define costs
: costm as the cost ratio of static and mobile sensors and Ccov as
the set of event locations detectable by the deployment. We ac-
knowledge that modeling the various costs involved is complex and
dependent on the event type and severity, and use sensor cost ra-
tios to determine the relative utility provided by in-situ and mobile
sensors. The objective of our planning algorithm is to then identify
a minimum cost placement set P = (Pstat ∪Pmob ) that covers the
set of all detectable events such that its overall utility is maximized.
This is equivalent to the weighted set cover problem defined as -
Definition.(Weighted Set Cover) Let L be a finite set of elements
and C={C1,C2, ...,Cn } be a set of subsets of L with weightsW =

{w1,w2, ...,wn }. The goal is to find a set Cs ⊆ C such that all the
elements are covered by Cs (i.e.)

⋃
Ck =

⋃
Ci ,∀Ck ∈ Cs ,∀Cj ∈ C,

and the sumofweights inCs is minimized (i.e.)minimize(
∑
wk ,∀Ck

∈ Cs ).
Using this definition, if C is the collection of event locations

covered by each sensor, andW the corresponding costs of static
and mobile sensors, finding a set cover Cs is a solution to the WSC
problem and hence shows the equivalence. The WSC problem is
NP-hard [11] thus implying that finding a solution for the plan-
ning problem is also computationally complex. We present our

approximate Hybrid Impact Driven network planning algorithm as
described in Algorithm 1 -
• For a given budget B and set of event locations E, we iterate
over the set of potential sensor locations and determine the
utility of placing a static sensor or an Insertion/Extraction
point at each location.
• For a static sensor sstati , we compute its utility for event ej as
a function of the impact caused in the time taken for the sen-
sor to detect the event (i.e.)U stat

ej (sstati ) = Iej /Mdt [s
stat
i , ej ].

• The utility for an (I/E) point smob
i depends on the impact

caused in the time taken for the existing static sensors to de-
termine the region of interest and for themobile sensors to tra-
verse to the event location (i.e.) Umob

ej (smob
i ) = Iej /(δdt [ej ]

+Mt t [s
mob
i , ej ]), where δdt [ej ] is the shortest time taken

for the placed static sensors to detect ej .
• We then compute the total utility as a function of the cost
incurred to achieve the above utilities. This is

Ustat (sstati )=

|E |∑
j=1

U stat
ej (sstati )/costs

for static sensors, and

Umob (smob
i )=

|E |∑
j=1

Umob
ej (smob

i )/(Mtc [s
mob
i , ej ] ∗ costm )

formobile sensor Insertion/Extraction points, whereMtc [s
mob
i

, ej ] is the minimum number of mobile sensors needed to be
deployed from smob

i .
• At the end of each iteration, we choose the sensor type
and location pairing with the largest utility and add it to the
placement set. We do this until either the budget is exhausted
or the network has been covered.

The algorithm is guaranteed to complete since every detectable
event location has at least one static sensor location that covers
it. The worst case running time of the algorithm, O((|Sstat | +
|Smob |)|E |2), occurs when at each iteration, only one new event
location is covered. This would result in long runtimes for large
scale water networks.We however use the concept of submodularity
to significantly reduce the number of utility computations in each
iteration, thus reducing the runtime [17].
Definition. (Submodularity) Let C be a finite set and f be a set
function. For all subsets Cs ⊆ Cr ⊆ C, and elements ci ∈ C \ Cr , f
is submodular whenever f (Cs ∪ ci )−f (Cs ) ≥ f (Cr ∪ ci )−f (Cr ).
Theorem 1. The utility functionsUstat ,Umob are submodular.
We provide the proof in the appendix □
Our greedy approach gives an approximation ratio of (1−1/e) sim-
ilar to the weighted set cover problem [17]. Hence, in a given it-
eration of the algorithm if U(s1) ≥ U(s2) ≥ U(s3) ≥ ..., then
s1 would be added to the placement. Then in the next iteration if
U(s2) ≥ U(s3), we can conclude thatU(s2) ≥ U(si ),∀i ≥ 3, thus
reducing the number of evaluations.

Once the locations of static sensors and mobile sensor Inser-
tion/Extraction points have been determined, we need to identify
the mobile sensor deployment locations. This depends on the di-
rection and velocity of water flow in the network as well as the
junctions that need to be localized. Given the junctions within
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Algorithm 1 Network Planning Algorithm

1: Input: Sstat , Smob, E,Mdc ,Mdt ,Mtc ,Mt t , B, costs , costm,

Pstat , Pmob, Cstat , Cmob, Ccov

2: Output: P = (Pstat ∪ Pmob )

3: Initial Conditions: Pstat = ∅, Pmob = ∅, Ccov = ∅,

4: while Ccov , |E | and B > 0 do
5: for i = 1→ |Sstat ∪ Smob | do
6: if sstati < Pstat then
7: for j = 1→ |E | do
8: U stat

ej (sstati )=Iej /Mdt [sstati , ej ]

9: Ustat (sstati )=
∑|E |
j=1 U

stat
ej (sstati )/costs

10: if smob
i < Pmob then

11: for j = 1→ |E | do
12: Umob

ej (smob
i )=Iej /(δdt [ej ] +Mt t [smob

i , ej ])

13: Umob (smob
i )=

∑|E |
j=1 U

mob
ej (smob

i )/(Mtc [smob
i , ej ]∗costm )

14: U(si )=max (Ustat (sstati ), Umob (smob
i ))

15: Umax (sv )={U(si ) :max (U(si )), ∀i : 1→ |S |}
16: if Umax (sv ) = Ustat (sv ) then
17: B ← B − costs
18: Ccov ← Ccov ∪ Cstatv
19: Pstat ← Pstat ∪ sv
20: else
21: B ← B − (Mtc [smob

v , E] ∗ costm )
22: Pmob ← Pmob ∪ sv

the regions of interest R, our objective is to identify the subset of
(I/E) points determined by our planning algorithm at which mo-
bile sensors need to be deployed (i.e.) D ⊆ Pmob . We describe our
deployment algorithm (Algorithm 2) -

Algorithm 2 Mobile Sensor Deployment Algorithm

1: Input: R,Mt t ,Mtc , P
mob

2: Output: D ⊆ Pmob

3: for all ej ∈ R do
4: d = ∅, d t = ∅
5: for i = 1→ |Pmob | do
6: if Mtc [P

mob
i , ej ] > 0 andMt t [P

mob
i , ej ] < d t then

7: d t = Mt t [P
mob
i , ej ]

8: d = Pmob
j

9: D ← D ∪ d

• For every junction ej in the region of interest R, we identify the
(I/E) points in the placement set Pmob , from which mobile sensors
can traverse to ej (i.e.)Mtc [P

mob
i , ej ] > 0.

• We then determine the (I/E) point with the shortest traversal
time and add it to the deployment set D.
•We repeat this till the entire region of interest has been localized.

More complex models for mobile sensor deployment are possible
that exploit existing control systems in the network such as pumps
and valves to change the direction and speed of water flow that
could result in fewer (I/E) points needed to ensure the reachability
and coverage of mobile sensors. However, this requires detecting
the state of the systems and estimating their levels of functionality
in the aftermath of the event. Our proposed approach, though more

conservative, results in deployment solutions unaffected by effects
of the event on these systems.

5 EXPERIMENTAL RESULTS
In this section, we evaluate our proposed hybrid adaptive moni-
toring architecture for both failure and contamination events. We
compare the performance of our approach to existing sensor de-
ployment approaches using water networks of varying scale and
validate our approach under multiple event scenarios. While our
experimental studies are conducted using simulators, we intend to
develop a testbed as part of our future work.

5.1 Experimental Setup
Water Networks. We evaluate our proposed architecture using
three real-world water networks of varying scale - (1) a subzone of
the Washington Suburban Sanitary Commission’s (WSSC) water
service area in Montgomery County, Maryland, (2) a model for the
Wolf-Cordera Ranch (WCR) in Colorado Springs, Colorado, and (3)
the Richmondwater distribution system, part of the Yorkshire water
supply area in the U.K. The data for (1) was obtained from WSSC
while for (2) and (3) from [9]. A summary of the network layouts is
shown in Figure 5. Figure 6 shows the layout of the WSSC network
and its surrounding community and shows the placement of in-situ
sensors and mobile sensor (I/E) points determined by the proposed
planning algorithm for a subset of the network. The layouts of the
Richmond and WCR networks are shown in the appendix.

Figure 5: Experimental Network Layout Summary

Figure 6: WSSC network and subset of sensor deployment
for failure and contamination events

Comparison Approaches.We compare our proposed Hybrid
Impact Driven planning and deployment approach (HID) to three
existing sensor placement approaches in water networks - Static
Coverage Driven (SCD) [20], Hybrid Coverage Driven (HCD) [19],
and Static Impact Driven (SID) from our previous work [29]. Here,
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static and hybrid refer to the sensor types being used in the ap-
proach. The SCD approach iteratively selects static sensor locations
based on the number of event locations covered and their ability to
distinguish between pairs of events. The HCD approach uses a cross
entropy based methodology to select a percentage of junctions to
install static sensors followed by determining mobile sensor release
points. The SID approach iteratively determines locations to install
static sensors based on their achieved impact mitigation of the event
on the community. Figure 7 shows the number of in-situ sensors and
mobile sensors in the deployments determined by each approach.
We observe that sensor deployments use fewer sensors to detect
and localize failure events since the event propagation (movement
of pressure wave) is faster as compared to the contaminant flow
which is restricted by the flow velocity of the water in the network.
We also see that the hybrid approaches result in the deployment of
far fewer in-situ sensors thus reducing the costs incurred. However,
the deployments resulting from impact driven approaches use more
sensors than their coverage driven counterparts since they attempt
to quickly localize high impact events resulting in more sensors
being deployed to cover vulnerable regions.

Figure 7: Number of sensors deployed (in-situ/mobile) by
each approach for failure and contamination events

Event Scenarios.We compare the performance of the sensor de-
ployments resulting from each of the approaches for the following
event scenarios -
1) Geo-correlated events:We simulate the cascading effects of failure
and contamination events by introducing them in spatially clustered
locations ranging from 5% to 50% of the network’s junctions where
the number of events in each cluster is uniform.
2) Critical events: We then introduce failure and contamination
events in the top 5% to 30% junctions ordered by impact.

5.2 Evaluating Effectiveness of Hybrid Sensor
Deployments

We compare the effectiveness of the sensor deployments resulting
from each approach using three metrics - (a) Detection and local-
ization times, (b) Impact caused, (c) Cost effectiveness. In order to
determine the impact of failure and contamination events as de-
scribed in Section 3.3, we obtain community structure information
by building the terrain elevation map (△ele ) using elevation data
from [31], obtain population density information (△pop ) from cen-
sus data [3], mine the coordinates of critical infrastructure (△inf )
in the area using the OpenStreetMap service [7], and determine the
demand of water at each junction (△dem ) from the network model.

Evaluating Detection and Localization Times: For each in-
troduced failure or contamination event in the above event scenar-
ios, we determine the shortest time taken to detect and localize the
event by the sensors deployed by each approach. We then compare
the average of these shortest times for all the introduced events.
Figure 10(a) shows the comparison of the average detection times

by each of the approaches for geo-correlated failure and contami-
nation events. We see that in general, the detection and localization
of failure events (98 − 398 sec) is faster than contamination events
(1010 − 7035 sec). Also, the detection and localization time of con-
tamination events increases with the size of the network, while
that of failure events remains consistent. This happens because
the high speed pressure wave resulting from pipe failures can be
detected quickly even in larger networks as compared to the slower
moving contaminant flow. We observe that the coverage driven
approaches (SCD,HCD) take a longer time on average to detect and
localize events as compared to impact driven approaches (SID,HID)
since their coverage based objective results in sparser sensor de-
ployments. We also observe that the proposed hybrid HID approach
takes approximately 9% longer to detect and localize events as
compared to the in-situ based SID approach.

Extent of Impact Caused: We then compare the approaches
based on the impact caused to the community by the failure and
contamination event scenarios before their deployments can detect
and localize the events. For each introduced event, we determine
its impact (Section 3.3) caused as a function of the shortest time
taken for each approach’s sensor deployment to detect and localize
it. We then compute the average normalized impact caused over all
the introduced events (Figure 10(b)). We see that for geo-correlated
events, the impact driven approaches (SID,HID) result inmuch lower
impacts on average since they prioritize the quick detection of high
impact events and the coverage of critical regions. We observe that
the proposed HID approach results in upto nearly 30% lesser impact
than the SID approach due to the faster localization of events using
mobile sensors and upto nearly 79% lesser impact than the coverage
based approaches.

Sensor type cost ratio: Here, we determine the influence of the
cost ratio between mobile and static sensors on their proportion in
the sensor deployment resulting from the proposed HID approach
by varying the cost ratio of mobile to static sensors from 1:1 to 1:10.
Figure 8 shows the proportion of static and mobile sensors for the
WSSC network for (a) failure and (b) contamination events. We see
that there is a stabilization in the proportions at a 1:5 cost ratio for
the WSSC network. We observe that this ratio increases with an
increase in the size of the network.

Comparison of coverage and cost of deployment: We then
use the 1:5 cost ratio to compare the costs of the deployments re-
sulting from each of the four approaches. We vary the number of
sensors from 10% to 100% of the total number of sensors in each
deployment and compare the costs incurred and the coverage of
the network achieved at each step for the WSSC network. Figure
9 shows that approaches using only in-situ sensors (SID,SCD) in-
cur much larger costs than the hybrid approaches (HID,HCD). We
also observe that the coverage driven approaches achieve higher
network coverage using lesser number of sensors.

Cost effectiveness of deployments: We evaluate the normal-
ized cost effectiveness of the deployments as a function of the total
impact caused and the total cost incurred. We observe from Figure
10(c) that for geo-correlated events, the proposed HID approach
proves to be the most cost effective by upto nearly 52% over the SID
approach and upto nearly 68% over the coverage based approaches.
This would improve as the cost ratio between mobile and static
sensors increases.
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Performance underCritical Events:Due to space constraints,
we present the results of the comparison of the four approaches for
the critical events scenario in the appendix. We observe that the
hybrid driven approaches detect critical events much faster than
coverage based approaches and result in lower impacts of events.
We also see that the proposed HID approach remains the most cost
effective by upto nearly 40% over the SID approach.

Figure 8: Proportion of in-situ and mobile sensors in
proposed hybrid approach deployment with varying mo-
bile:static sensor cost ratios for the WSSC network

Figure 9: Progression of sensor deployment costs and
achieved event coverage with increasing number of sensors
by the approaches for the WSSC network

6 CONCLUSION AND FUTUREWORK
In this paper we presented a novel architecture for the adaptive
monitoring of water distribution networks to quickly detect and lo-
calize adverse events like pipe breaks and chemical contamination.
The architecture leverages in-situ and mobile sensing to provide a
cost-effective solution that minimizes the impact of these events on
the community. We presented a two-phase approach that incorpo-
rates information about the network, events, and the community to
determine locations to install sensing infrastructure and to deploy
mobile sensors and evaluate its effectiveness using real-world water
networks of varying scale. While we demonstrate that a hybrid
architecture provides improved cost-effectiveness, its biggest ad-
vantage lies in the flexibility provided by its adaptive monitoring
capabilities. As part of our future work, we intend to provide more
detailed models of the installation and operational costs incurred by
in-situ and mobile sensors and determine methods to leverage exist-
ing control systems and infrastructure while maintaining reliability
under sensor measurement uncertainties.
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(a) Average detection and localization times of the deployments for geo-correlated events

(b) Average normalized impact caused by geo-correlated events in the time taken for the deployments to detect and localize them

(c) Normalized Cost Effectiveness of the sensor deployments for geo-correlated events
Figure 10: Comparison of Approaches for Geo-correlated events
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APPENDIX
A PROOF OF THEOREM 1
Proof - We see from the formulation of the event utility functions
Ustat ,Umob that they depend on the impact caused by the event
and the time taken to detect and localize it. Since, the impact for-
mulation derived from Section 3.3 is independent of the sensor
deployment, the submodularity of the event utility functions de-
pends on the detection timeMdt and traversal timeMt t .

For the static event utility functionUstat , consider two place-
ment sets Pstat ⊆ Qstat ⊆ Sstat . Given an event ej ∈ E that
can be detected by a static sensor installed at location i such that
sstati ∈ Sstat \ Pstat . Depending on the time taken for sstati to
detect ej , there are three cases -
(1)Mdt [s

stat
i , ej ] ≥min(Mdt [P

stat , ej ]).
This impliesmin (Mdt [P

stat ∪ {si }, ej ]) = min(Mdt [P
stat , ej ])

andmin (Mdt [Q
stat ∪ {si }, ej ]) = min(Mdt [Q

stat , ej ]).
Hence,Ustat (Pstat ∪ {sstati }) -Ustat (Pstat ) =Ustat (Qstat ∪

{sstati })−Ustat (Qstat ) = 0.
(2)min(Mdt [Q

stat , ej ]) ≤ Mdt [s
stat
i , ej ] < min(Mdt [P

stat , ej ]).
This implies Ustat (Qstat ∪ {sstati })=Ustat (Qstat ) and hence
Ustat (Pstat ∪{sstati })−Ustat (Pstat ) ≥ Ustat (Qstat ∪{sstati })

-Ustat (Qstat ).
(3)Mdt [s

stat
i , ej ] < min(Mdt [Q

stat , ej ]).
Here,Ustat (Pstat∪{sstati }) ≥Ustat (Qstat∪{sstati }) andUstat (Pstat )

≤ Ustat (Qstat ) due to the non-decreasing property of Ustat .
Hence, we getUstat (Pstat∪{sstati }) −Ustat (Pstat ) ≥ Ustat (Qstat∪

{sstati })−Ustat (Qstat ).
Hence, we show that Ustat is submodular. Similarly we can

show thatUmob is submodular.

B NETWORK LAYOUT OF RICHMOND AND
WOLF CORDERA RANCH

Figure 11: Network Layouts of WCR and Richmond

C CRITICAL EVENTS EXPERIMENTAL
STUDY



ICCPS ’19, April 16–18, 2019, Montreal, QC, Canada Praveen Venkateswaran, Mahima Agumbe Suresh, and Nalini Venkatasubramanian

(a) Average detection and localization times of the deployments for critical events

(b) Average normalized impact caused by critical events in the time taken for the deployments to detect and localize them

(c) Normalized Cost Effectiveness of the sensor deployments for critical events
Figure 12: Comparison of Approaches for Critical events
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