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Abstract—In this paper, we present our experiences in applying state-
of-the-art forecasting solutions to meet the forecasting needs of various
business domains. We present four real-world case-studies varying in
the business objectives, forecasting needs, and domain properties. Each
case-study presented unique challenges in translating theory into practice
and translating forecasting observations into domain-specific recommen-
dations. We summarize the lessons learnt while deploying across various
case-studies, and demonstrate how the state-of-the-art solutions coupled
with industry best practices can deliver powerful solutions to meet
forecasting needs of any business domain.

I. INTRODUCTION

The ability to forecast provides powerful capabilities to better

understand and manage an enterprise. Business needs to understand

the likely future behavior of the system for activities such as inventory

planning, product strategy planning, creating sale pipelines, and

developing marketing plans. With the wide adoption of digitization,

a large volume of data gets collected, capturing various aspects of

business and operations. The increasing availability of such rich data

has made it easier to forecast future behavior.

However, the forecasting approaches across domains vary due to

the following reasons:

1) Business objectives: Different domains use forecasting to meet

different objectives. For instance, system architects use capacity

forecasts to make plans for capacity augmentation or ratio-

nalization. On the other hand, support staff personnel use the

forecasts of trouble tickets in the future in order to get more

time to take corrective actions. Domains thus vary in the way

they use forecasting output ranging from planning inventory to

developing marketing plan to planning team size and building

competency.

2) Forecasting needs: Different domains have different forecasting

needs. For instance, some business problems (such as IT

capacity planning) demand a coarse-grained forecast but for a

longer duration in future. On the contrary, some domains (such

as banking and financial organizations) are keen on fine-grained

forecasts of near future. Similarly, domains vary in their needs

to process peaks and troughs, noise, desired levels of accuracy,

treatment of outliers, etc.

3) Domain properties: Domains also differ in the data properties

observed in the time-series of its various metrics. For instance,

supply chain management observes gradual trends reflecting

the adoption of new products in the market. In the event

of sales and promotions, they observe sudden changes in

demands. Retail enterprises observe strong periodic signature

with changing seasons. Similarly, domains differ in other time-

series properties showing variations in trends, presence/absence

of periodic patterns, type of periodic patterns, level of noise,

and types of changes.

A large body of literature [5], [9] exists on forecasting algorithms

which forecast future data as a function of past data. In business

domains, the forecasts of a large number of univariate time-series

are required. Under these circumstances, two popular types of fore-

casting algorithms are regression and smoothing based algorithms or

ARIMA-models.

While forecasting as a science is fairly advanced, converting theory

into practice is an interesting journey. We present our experience

through four such journeys on how to leverage the state-of-the-art

forecasting solutions to meet business objectives. While forecasting

algorithms stop at accurately predicting the future values, we further

demonstrate the process of translating the forecast observations into

business-relevant insights and recommendations. While presenting

these case-studies, we also highlight situations where we leveraged

industry best practices and domain knowledge to obtain effective

solutions.

We present the following four real-world case-studies:

• Multi-tier transactional system: We present the analysis of a

set of servers serving a front-office insurance application. The

objective of this case-study is to predict the utilization of

compute and storage devices to better plan the system capacity.

The predictions are used to derive recommendations for either

capacity augmentation or capacity rationalization.

• Supply chain management: We next present a case-study of a

retail organization that analyzes the demand of different products

to predict future demand. The predictions are used to derive

recommendations for either decommissioning of products with

diminishing demand or stocking-up of products with rising

demands.

• Infrastructure support: We present a case-study involving the

analysis of tickets data resolved by the support teams. Predic-

tions are used for generating notifications for future volume of

tickets and the volume of specific types of issues. These insights

provide the support teams more time to take corrective actions.

• Back-office banking operations: Finally, we present a case-study

of a batch system driving the back-office operations of a banking

organization. We analyze the execution time of batch jobs to

generate notifications of future performance problems. These

recommendations are used by the problem management teams

to take timely corrective actions to prevent the problem from

occurring in the first place.

Each of the above case-studies presents different challenges with

respect to the availability and quality of data, the business challenges,

and the domain properties. As a result, each demands different

solutions to derive effective forecasts. Through these case-studies, we

present the lessons learnt while deploying and also present various

challenges and open issues in this space.

II. RELATED WORK

Given the plethora of available forecasting algorithms, many ex-

isting works aim to answer the question of when each algorithm

should be used. Authors in [12] determined the accuracy of various

2016 IEEE 16th International Conference on Data Mining Workshops

2375-9259/16 $31.00 © 2016 IEEE

DOI 10.1109/ICDMW.2016.148

584

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on November 29,2021 at 23:20:15 UTC from IEEE Xplore.  Restrictions apply. 



forecasting methods in order to select the most appropriate one. Au-

thors in [11] presented the first graphical classification for exponential

smoothing methods. Authors in [1] evaluated several forecasting

methods across several demand patterns such as constant, linear,

trend, etc. The findings indicated that no single model is consistently

better than the others, and that their performance depended on various

factors such as demand patterns, randomness, etc.

In more recent work, authors in [7], [10] have discussed specific

situations where a particular set of algorithms would perform better.

While choosing the forecasting algorithm, we adhere to the overall

consensus that when there are patterns present in the time-series,

using ARIMA models [3] would provide good results and when the

time-series consists of only trends without the presence of patterns,

a regression-model [6] would be the choice of algorithm.

III. CASE STUDY 1: MULTI-TIER TRANSACTIONAL SYSTEM

We first present a case-study of the transactional system of an

insurance company in the US. The system consisted of an array of

web, application, and database tiers hosted on a set of Linux servers.

A. Objective

The organization was planning an infrastructure upgrade and hence

the objective of the case-study was to analyze the current and future

capacity requirements and generate recommendations for capacity

augmentation or capacity rationalization.

We analyzed the history of the performance of 17 servers. Specif-

ically, we analyzed time-series data of CPU utilization, IOPs, and

memory utilization of these 17 servers. The forecasting was per-

formed on 51 time-series (3 time-series of each of the 17 servers). The

data was collected for a duration of 3 months at an hourly granularity.

Figures 1(a), (b) and (c), show the time-series of the CPU utilization,

IOPs, and memory utilization respectively of one of the servers.

B. Domain properties

We observed the following properties in the domain which in-turn

also reflect in the time-series of various metrics:

• Patterns:
1) Effect of business hours: The system was serving an internal

application that was operational mostly during the business

hours. As a result, the application observed high workload

during the business hours and very low workload otherwise.

This property reflects in the form of temporal patterns in the

underlying servers as well. Figure 1(d) shows a representative

slice of 2 days of the time-series of the CPU utilization which

shows high usage during business hours (8 AM to 8 PM) and

shows low usage during non-business hours (8 PM to 8 AM).

Similar periodic patterns are observed for the IOPs and memory

utilization as well as shown in Figures 1(e) and (f).

2) Distinct periods: The application had dedicated servers which

were not shared across different applications. As a result, the

patterns observed in the time-series of CPU, memory, and IOPs

observe clean distinct patterns. The memory utilization generally

shows more variation than both IOPs and CPU utilization.

• Value ranges: Both CPU and memory utilization have a limited

range of possible values ranging from 0 to 100. IOPs values

have no such limit.

• Noise: Being an internal application with consistent homoge-

neous workload, it observed minimal variations. The workload

is well-defined with finite users and a finite set of operations. As

a result, the time-series of the metrics observed very less noise.

• Trends: Some of these time-series displayed the presence of

trends due to gradual changes in the business workload.

C. Forecasting approach

The presence of periodic patterns along with the lack of noise

implies that the prediction of these time-series can be done very

effectively by deriving ARIMA models. However, the effectiveness

of these models depends upon the use of the right data and the right

parameters. Below we discuss our approach for forecasting these

time-series:

1) Period: ARIMA models require defining the period of the

time-series. A common approach to detect the periods is by using

a periodogram. Figures 1(g), (h) and (i) show the periodogram of

the time-series of the three metrics. The x-axis represents the period

value while the y-axis represents the power of the period. The usual

approach is to identify the highest peak as the most dominant period.

As shown in the figures, we obtain the top 2 peak values for each

metric. However, sometimes there are multiple periods present in

the time-series. For instance, in Figure 1(b), we see that the most

dominant period is 13 hours followed by 90 hours. The 90 hour

period reflects the weekly pattern which is dominated by the daily

pattern of 13 hours. Hence, it is necessary to identify the longest

relevant period.

At times, the period values obtained from the periodogram need

correction to reflect the patterns generally observed in this domain.

In transactional systems, the patterns follow certain fixed temporal

dimensions such as Half-daily (12 Hours), Daily (24 Hours), Half-

weekly (84 Hours), Weekly (168 Hours), etc. We correct the observed

peaks (13 and 90 hours) of the CPU utilization (Figure 1(g)) to

the corresponding domain specific periodic patterns (Half-Daily and

Half-Weekly).

2) ARIMA forecasting: We then build the ARIMA model using the

derived period in order to obtain the forecast values. Figures 1(j), (k),

(l) show the forecast results of the three time-series for the next 3

weeks.

D. Accuracy of forecast

We compute the accuracy of the point forecasts in all the case-

studies using the Mean Absolute Percentage Error (MAPE) computed

as M = 1
n

∑n
t=1 |At−Ft

At
|. Figure 2(a) shows the observed distribu-

tion of accuracy for the CPU utilization forecast for all 17 servers.

We see that 12 servers show an accuracy >98%. This high accuracy

is obtained due to the presence of clear periodic patterns.

E. Using forecasts to plan future infrastructure capacity

Figure 3(a) shows the heatmap of the CPU capacity utilization of

17 servers for both past observed values as well as future forecast

values. The thresholds for low, medium and high utilizations were

derived from industry standards. On the basis of the heatmap we

provide two types of recommendations:

1) Capacity augmentation: We recommended capacity augmenta-

tion for the following servers in order for them to be able to handle

the increase in CPU capacity utilization.

• We observed 3 servers (Servers 6, 7, and 8) with significant

increasing trend.

• We observed 2 servers (Servers 9 and 12) with consistently high

usage.

• There were 3 servers (Servers 2, 3, and 5) with a sharp change

to high capacity.

• Figure 3(b) shows the example of the CPU utilization of a server

that observed consistently high usage.
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Fig. 1. Example of forecasting server metrics : (a, b, c) Time-series of CPU utilization, IOPs, Memory utilization, (d, e, f) Representative slice of CPU,
IOPs, Memory, (g, h, i) Periodogram of CPU, IOPs, Memory, (j, k, l) Forecast of CPU, IOPs, Memory

Fig. 2. Forecast accuracy distribution (a) CPU utilization (b) Demand point
forecast (c) Demand confidence bands

Fig. 3. (a) Heatmap of CPU capacity utilization, (b) Example of continuous
high CPU utilization, (c) Example of decreasing CPU utilization

2) Capacity rationalization: We recommended capacity rational-

ization for the following servers in order to minimize wasted compute

resources.

• There were 3 servers (Servers 10, 15, and 17) with significant

decreasing trend.

• We observed 2 servers (Servers 1 and 11) with consistently low

usage.

• We observed 1 server (Server 16) with a sharp change to low

capacity.

• Figure 3(c) shows the example of a server with a decreasing

trend in its CPU utilization.

IV. CASE STUDY 2 : SUPPLY CHAIN MANAGEMENT

We next present a case study from the domain of supply chain

management of a retail customer in the US.

A. Objective

The customer was observing significant changes in the demands

of various items and hence was struggling to plan the inventory.

The objective of the case-study was to predict the future demand

of various items. The predicted demand is then used to generate

recommendations for either the stocking-up or decommissioning

of items. The business objective thus did not require fine-grained

forecasts but a broader range.

We analyzed the time-series data of the number of orders generated

for 77 products. The data was collected over a duration of 4 months

at a daily granularity. Figure 4(a) shows the time-series of the number

of orders generated for one of the products.

B. Domain properties

The properties of the order time-series are observed to be signifi-

cantly different from the previous case-study. Below are some of the

key properties:

• Patterns:

1) Constant behavior: The order time-series for some products

were observed to be very consistent. This behavior is common in

the items that have reached maturity in the market, thus leading

to stable demand.

2) Absence of periodic patterns: In most of the order time-series,

we did not observe any dominant periodically occurring pattern.

• Value ranges: The values were observed to be ranging between

0 to 600 orders.

• Noise: The order time-series observed high noise levels showing

high variations in the demand. Noise is caused by various

factors. The retailers order in bulk to maintain stock, plan with a

look-ahead, or negotiate a good deal. As a result, the time-series

demonstrate irregular peaks and troughs in the demand values.

• Trends: The demand time-series of many items observe strong

trends. Increasing trends are observed when the product is pro-

moted by means of advertisements or word-of-mouth publicity.

This results in a gradual increase in the demand of the product.

Similarly, many products observe a gradual decrease in demand.

This decreasing trend is generally due to the emergence of a

competitor in the market.

• Changes: Abrupt changes are observed in the demand patterns.

These changes are associated with a rapid change in demand
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Fig. 4. (a) Example of time-series exhibiting noise, (b) Identifying outliers
after smoothing, (c) Forecast using regression model, (d) Confidence bands

due to sales and discounts. Sudden increases are observed when

the current product is on sale, while sudden decreases can be

due to discounts on rival products.

C. Forecasting approach

Owing to these properties, the time-series of orders observe strong

trends and high levels of noise. Unlike the previous case-study,

ARIMA-models are not a good fit due to the lack of patterns. Instead,

we propose to use regression-based solutions to predict future demand

values. In addition, given the high levels of noise, forecasting precise

values of future demand would be inaccurate. Instead, we propose to

forecast a band of likely values. Below we discuss our approach for

forecasting these time-series.

1) Smoothing: In order to minimize the effect of noise and better

capture the trend of the demand, we smoothen the time-series by

using a moving average window. Figure 4(b) shows the time-series

after smoothing.

2) Outlier removal: Regression-based solutions are highly sensitive

to outliers. The outliers in Figure 4(b) are denoted by dots. In the

presence of outliers, the regression models fail to capture the trend

correctly. We remove the outliers before computing the trend.

3) Regression model: We then fit regression models [6] to compute

the relationship between item demand and time. We then extrapolate

these trends to forecast likely future values. Figure 4(c) shows the

derived regression model as well as the forecast demand values.

4) Confidence bands: In order to cater to the high noise volumes,

we compute confidence bands along with the prediction. Some

common approaches are to use the model fit error or to compute a

percentage confidence interval. However, generating bands using the

model fit error and the point-wise confidence results in symmetric

bands which might not be accurate if there is a significant difference

in the noise above and below the best-fit line. For instance, in

Figure 4(c), the amount of variation is larger in the values above

the regression line as compared to the values below the line. In this

case, the lower band should be narrower than the upper band.

We compute the confidence bands as a function of the level of noise

above and below the best-fit line. We first compute the time-series

residuals. We then check whether it resembles noise using the Ljung-

Box test [8]. We analyzed 77 demand time-series and were able to

detect significant levels of noise in 72 of them. The remaining time-

series had constant demand values. Figure 4(d) shows the demand

prediction for the item. We see that there are wider bands above the

best-fit line and narrower bands below.

Fig. 5. (a) Heatmap of item demands, (b) Example of decrease trend, (c)
Example of increasing trend

D. Accuracy of forecast

We first identified the point forecast accuracy for the items as

shown in Figure 2(b). We see that there are 40 items that have an

accuracy <85%. The overall accuracy values range widely from 65%

to 98%. This is primarily due to the noisy nature of the order time-

series.

We then identified the accuracy using the confidence bands. The

definition of accuracy used was the proportion of actual test values

that were contained within the confidence bands. Figure 2(c) shows

the distribution of accuracy. We see that the order time-series fore-

casts of 48 items display an accuracy of approximately 90%. There

are 6 items that have an accuracy >95%. The average width of the

confidence bands was not large and observed to be 15% above or

below the best-fit line.

E. Using demand forecasts for inventory planning

We used the demand forecasts in order to generate recommen-

dations for inventory planning. Figure 5(a) shows the heatmap of

the demands for 40 items for both past as well as future demands.

On the basis of the heatmap we were able to provide the following

recommendations:

• We recommended potential stocking up of inventory for 9 items

(e.g. Items 16, 18, 37) due to strong increasing trends. Figure

5(c) shows an example of an item that exhibits increasing trend

in its demand.

• We recommended the potential decommissioning of 12 items

(e.g. Items 2, 5, 28) due to the presence of decreasing trends.

Figure 5(b) shows an example of an item that exhibits decreasing

trend in its demand.

• There were 19 items (e.g. Items 1, 10, 14) that exhibited constant

trends leading to recommendations to retain the current demand

policy.

V. CASE STUDY 3: INFRASTRUCTURE SUPPORT

We next present a case-study from the domain of IT infrastructure

support (ITIS). ITIS is responsible for effective management and

maintenance of IT infrastructure resources such as hardware, system

software, and business application programs. Whenever any resource

observes errors, faults, difficulties or special situations, a ticket is

created in a ticketing system to bring it to the attention of experts

in the ITIS function. Tickets are automatically created by monitoring

tools that continuously monitor systems for anomalies. Alternatively,
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Fig. 6. Example of time-series with (a) Weekday/Weekend pattern, (b)
Increasing trend followed by decreasing trend

users also generate tickets when observing system problems. This

ticket is assigned to a resolver who obtains more information about

the problem and then fixes it.

A. Objective

An incoming ticket needs to be resolved within a frame of time

defined as a part of the Service Level Agreement (SLA). Resolution

time for high severity alerts is usually in the order of a few minutes or

hours. Consequently, resolvers do not get enough time to act on the

problem resolution. The objective of this case study was to use the

past history of tickets in order to predict future issues. By predicting

future problems, sufficient time can be given to the resolvers to either

(a) prevent the problem from occurring or (b) identify appropriate

resolution.

We analyzed the time-series of number of tickets generated for 43

distinct types of issues. The data was collected for a duration of 6

months at a daily granularity. Figure 6(a) shows the time-series of

the number of orders generated for one of the products.

B. Domain properties

The time-series of number of tickets demonstrated the following

properties specific to the domain of ITIS:

• Patterns:

1) Weekday-Weekend pattern: The tickets for various issues

generally observed a weekly pattern in the volume of tickets,

observing higher volumes over weekdays and lower volumes

over weekends. This behavior gets explained by the usage

pattern of the application. The application being analyzed was

used heavily over the weekdays. Figure 6(a) shows the time-

series of the issue referring to high execution time of SQL

queries. This time-series shows higher volume of tickets on

weekdays varying from 30 to 80 tickets per day and almost

zero tickets on weekends.

• Value ranges: The values were observed to be ranging between

0 to 500 tickets per day.

• Noise: The time-series of tickets observed high noise as the

arrival of tickets was dependent on the usage of the application,

which is usually non-uniform and is driven by business needs.

• Trends: Many time-series observed dominant increasing or de-

creasing trends owing to different phases of application insta-

bility and hardening.

• Changes: In many time-series, we observed a change in trend.

Every new application goes through a process of hardening. In

the initial phases, we observed increasing trend in majority of

the tickets, owing to various deployment issues and instability

in the application. Over time, as the application stabilized, we

observed a decreasing trend, eventually resulting in close to zero

tickets. Consider the time-series of a performance issue observed

at an application as shown in Figure 6(b). This issue observed

an increasing trend after the deployment of a patch. The ticket

volume of the issue starts observing a decreasing trend after

multiple optimizations by the problem management teams.

C. Forecasting approach

Given the presence of strong periodic patterns, we used an

ARIMA-based forecasting approach. However, given the fact that

many time-series’ observe a change in trend, it is necessary to first

detect these changes [2] and then select the right history to predict the

future. Failing to detect these change-points can significantly mislead

the forecasts. We propose the following approach to predict the time-

series of future ticket volume of different issues:

1) Detect change in trend: We first detect the presence of any

change in trend in the time-series. Figure 7(a) shows a change-point

wherein there was an increasing trend before the change-point and a

decreasing trend after it. We identify the most recent steady state by

identifying the last change-point.

2) Periodogram: The presence of periodic patterns calls for the

usage of ARIMA models. As stated in the first case study, these

models are dependent on the period of the time-series.

We use periodogram to detect the length of the periods. Figure

7(b) shows the periodogram of an issue where the x-axis shows the

period length in days. We observed three dominant periods of 5, 7,

and 2 days in decreasing order of strength. These periods indicate

the presence of a weekly pattern where the periods of 7, 5, and 2

indicate day-of-week, weekdays, and weekends respectively.

3) ARIMA forecasting: Since the dominant periods all refer to the

presence of a weekly pattern, we set a weekly period to the time-

series and forecast the number of tickets of the issue using an ARIMA

model. Figure 7(c) shows the forecasted values.

4) Confidence bands: The presence of noise implies that point fore-

casts would be inaccurate and hence confidence bands are required.

However, unlike the previous case-study where we could derive the

bands using the overall amount of noise, the presence of patterns

calls for a different method. The level of noise varies across the

different patterns. For instance, in Figure 7(a), the weekend values

are consistent and show only a small amount of variation. On the

other hand, weekday values observe a high variation. As a result,

we compute different confidence bands for each pattern. Figure 7(d)

shows the forecast result along with the confidence bands. From

the figure, it can be seen that weekends have narrow bands while

weekdays have broader bands.

D. Accuracy of forecast

We analyzed 43 unique issues of which 4 issues had extremely

high noise and lack of any trend or pattern and hence were not

predicted. The distribution of the point forecast accuracy is shown

in Figure 8(a). We observe that 30 issues had an accuracy >85%

with the overall range being from 65% to 97%. This large range was

due to the presence of noisy time-series that could not be predicted

accurately using point forecasts. We then identified the accuracy using

confidence bands as in the previous case-study. Figure 8(b) shows

the distribution of accuracy. It can be seen that 24 issues could be

predicted with an accuracy >95%. The overall accuracy range was

from 90% to 100%.

E. Using ticket forecasts for timely resolution

Figure 9(a) shows the heatmap of the health of the issues for both

past observed tickets as well as future forecasted tickets. Using the

heatmap we were able to provide the following recommendations:

• 12 issues (e.g. Issues 3, 21, 28) observed increasing trend and

are likely to appear in higher volumes. These issues primarily
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Fig. 7. (a) Time-series showing change in trend, (b) Periodogram with weekly pattern, (c) Point forecast (d) Confidence bands

Fig. 8. Accuracy distribution of forecasts for (a) Ticket point forecast, (b)
Ticket confidence bands, (c) Job runtime

Fig. 9. (a) Heatmap of ticket count (b) Example of decreasing trend (c)
Example of increasing trend

referred to the SQL performance issues. Proactive measures

could be taken to fix these issues and prevent their increased

volumes in the future. Alternatively measures can be taken to

ensure timely resolution when they occur (Figure 9(c)).

• 13 issues (e.g. Issues 17, 25, 31) observed decreasing trend.

These issues primarily referred to infrastructure issues such as

file system getting full, or high CPU usage and were likely to

further diminish (Figure 9(b)).

VI. CASE STUDY 4: BACK-OFFICE BANKING OPERATIONS

We present the case-study of the batch system of a banking firm in

the US. We present analysis of one business unit that was undergoing

expansion resulting in an increase in the number of transactions being

processed by the jobs. An increased workload manifests in different

ways in the performance of different jobs.

A. Objective

The objective of the case-study was to predict future behavior of

the batch system and generate predictive-preventive alerts, and thus

enable the batch administrators to eliminate the problem before it

occurred.

We analyzed the time-series of the runtime (time to complete

execution) of 1410 batch jobs. The data was collected for a duration

Fig. 10. Example of change in (a) mean, (b) period - increase in frequency

of 6 months at an hourly granularity. Figure 10(a) shows the time-

series of the runtime of one of the batch jobs.

B. Domain properties

The time-series of the runtime of the batch jobs demonstrated

properties that are very specific to batch systems. Below we discuss

these properties:

• Patterns:

1) Well-defined execution patterns: Batch jobs have a fixed

execution sequence. Most jobs run once a day or have a cyclic

pattern of executing every few hours.

2) Constant value: Some jobs execute for a constant time and

are unaffected by changing workload. As a result, the time-series

of these jobs are constant.

3) Day of week patterns: Some jobs behave differently across

different days of week or days of month. For instance, there are

maintenance jobs that perform complete backups on Mondays,

and incremental backups on rest of the days of the week. Such

jobs show high peaks on Monday and lower values on rest of

weekdays.

• Value ranges: The runtime values were observed to be ranging

between 1 to 1500 minutes.

• Noise: Given the off-line nature of workload and fixed execution

patterns, the execution time of batch jobs do not observe high

noise levels and demonstrate predictable runtimes.

• Changes:

1) Significant changes in mean: Batch jobs are highly interde-

pendent on one-another and as a result, any change in business

or infrastructure reflects across many jobs. The time-series of

batch jobs thus observe significant persistent changes. Figure

10(a) shows the effect of infrastructure upgrade in the form of

reduction in the mean of the job runtimes.

2) Change in period due to business changes: An interesting

change that is quite often observed in batch systems is the

change in periodicity. Execution of batch jobs is governed by

a certain schedule. Any change in this schedule leads to a

change in the periodic pattern. For instance, Figure 11(a) shows

the example of a job that ran full health-checks every Sunday

and partial health-checks every Tuesday. As a result, the time-

series shows 2 weekly patterns. The full health-check resulted

in high peaks on Sundays and the partial health-check resulted

in smaller peaks on Tuesdays. Over time, due to a change
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Fig. 11. (a) Example of change in period - multiple to single period (b)
Forecasted runtime

in policy, the health-checks were done only on Sunday. This

change is reflected in the time-series as a single weekly pattern

causing high peaks only on Sundays. Consider another example

shown in the Figure 10(b). The batch job in this figure collected

performance measurements over predefined periodic interval of

6 hours. After a few months, this configuration was changed

as shown by the dotted line, to collect the measurements every

hour. This change reflects as a change in periodic pattern from

6 hours to 24 hours.

C. Forecasting approach

The batch jobs exhibit some very specific properties such as strong

periods, low noise, and significant-persistent changes. We hence

derive ARIMA models in order to generate the forecasts.

1) Outliers: Each observed temporal pattern of a job displays

a normal range of values. Hence, the removal of outliers requires

the identification of those points that display a significant deviation

from the normal behavior of the temporal pattern. We used a local

outlier definition by identifying the different temporal dimensions and

defining each of their normal behaviors.

2) Changes: Batch jobs usually demonstrate two types of changes

- changes in mean/standard deviation and changes in periodicity. We

were interested in identifying the changes that were both significant

and persistent. We detected these changes to arrive at the most recent

steady state to use for forecasting.

3) Period: After extracting the latest steady state, we compute the

periodic pattern exhibited by the job. The business domain of the

batch systems ensures that there are fixed combinations of possible

temporal dimensions. Jobs display patterns conforming to hour-

of-day, day-of-week, day-of-month, week-of-month, etc. Instead of

detecting periods using periodogram, using the domain knowledge

leads to better derivation of periods. We first use Classification and

Regression Trees (CARTs)[4] to find influential temporal dimensions.

We then profile these temporal dimensions to identify the normal

behavior of each dimension and then forecast the runtimes of the

job.

4) ARIMA forecasting: We then build the ARIMA model using the

derived period in order to obtain the forecast values. Figure 11(b)

shows the forecast results of Figure 11(a).

D. Accuracy of forecast

We analyzed one business unit consisting of 1410 jobs. Figure

8(c) shows the accuracy distribution of the jobs. We were able

to forecast the time-series of 1024 jobs with an accuracy >86%.

This accuracy was due to the presence of strong patterns and low

noise. The accuracies are also attributed to the correct detection of

changes. We observed changes in 703 time-series. The jobs with

lower forecast accuracy had high levels of noise, undetected changes,

and unexpected behavior in the form of outliers in the test set.

Fig. 12. (a) Heatmap of job runtimes, (b) Example of increasing trend, (c)
Example of constant trend

E. Using forecasts to generate preventive alerts

Figure 12 shows the heatmap of the alert counts for 40 jobs for

both the past as well as the forecasted duration. Using the heatmap

we were able to generate the following recommendations:

• Alerts were generated for 20 jobs (e.g. Jobs 6, 9, 27) showing

increasing trends in runtime. They need further analysis to

prevent any potential disruption. Figure 12(b) shows an example

of a job with an increasing trend.

• Alerts were generated for 6 jobs (e.g. Jobs 26, 28, 40) showing

decreasing trends in runtime. Abnormally low runtimes could

be an indication of the job terminating with exceptions if not

receiving the right data.

• 14 jobs (e.g. Jobs 2, 24, 35) are healthy and observe constant

behavior. We do not expect any potential problems with these

jobs. Figure 12(c) shows an example of a job which has no

significant trend.

VII. LESSONS LEARNT

In this section we describe some of the lessons learnt while fore-

casting various metrics across different domains that were described

in the case-studies.

A. Data Preparation

1) Missing data handling: Different domains have different meth-

ods to capture data. For instance, in domains where the data is system-

generated, it is captured at a fixed granularity and is uniform. The data

can generally be used as-is for forecasting. In system-generated data,

it is easy to detect the presence of missing data since the capturing

granularity is fixed and known beforehand. Both case-study 1 and 4

collected data using monitoring tools and there was no missing data

observed.

However, in domains where the generation of data is ad-hoc and

dependent on the environment, it is non-uniform and cannot be

directly used for forecasting. The data needs to be made uniform

by either inserting the missing timestamps and/or aggregating at

a larger granularity. When the data is environment-dependent, we

cannot differentiate missing data from the absence of data. Case-

studies 2 and 3 had holes because the nature of data was itself ad-

hoc. Hence, the data in both these case studies does not follow a

consistent structure with respect to time granularity. We aggregated

the time-series in both these cases at a daily level to make it uniform.
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There were no hourly patterns present and hence the daily aggregation

ensured that no patterns were suppressed.

2) Smoothing: Smoothing of a time-series is needed mainly when

noise is present. Smoothing the time-series was not necessary in

case-studies 1 and 4. However, for case-studies 2 and 3, we had to

implement different smoothing approaches. In case-study 2, due to

the high levels of noise, we used an aggressive smoothing approach

in order to minimize the effect of noise on the regression model. This

approach could not be used in case-study 3 due to the presence of

patterns. We, instead, used a more relaxed smoothing approach in

order to ensure that the observed patterns were retained even after

smoothing.

3) Outliers: In case-study 2, we used a global definition of outliers

across the entire time-series. However, we could not use a global

definition in the other case-studies due to the presence of patterns.

This is because, the occurrences of large values may themselves

define a periodic pattern and hence would not constitute outliers. For

instance, consider the following scenario - the time-series exhibits

larger values on every Monday as compared to the other days of the

week. Using a global definition would result in all the data points

on Mondays being classified as outliers which would be incorrect.

We instead employed a local definition in case-studies 1, 3 and 4

by identifying the different temporal dimensions and defining their

normal behavior. We then identified outliers within each dimension.

B. Dealing with Changes

One of the most common changes that we observed across all

four case-studies is the change in mean. This behavior manifests

prominently in IT infrastructure case-studies (case-studies 1 and 4).

For instance, in case-study 1, we observed scenarios of infrastructure

upgrade that results in a change in the mean of the time-series of

CPU utilization.

Another change that significantly impacts prediction is the change

in trend. These changes are commonly evident in the infrastructure

support case-study (case-study 3). An application undergoes a life-

cycle of gradual increase in number of issues observed in the initial

phases of deployment, and then eventually a gradual decrease in

number of issues as it stabilizes. This behavior manifests in the

time-series of daily tickets as a change in trend from increasing to

decreasing.

An interesting change that we observed specifically in the case-

study of back-office operations (case-study 4) is the change in

periodicity. For instance, a change in execution schedule of a batch

job can lead to a change in the periodic patterns from a 12 hour

period to a 1 hour period.

The definition of the significance and persistence of the change

are dependent on the nature of the time-series as well as the domain.

For instance, a 20% increase in orders over a week would constitute

a significant and persistent change in the supply chain management

domain (case-study 2). On the other hand, in the IT infrastructure

domain (case-study 1 and 4), an increase in CPU utilization over a

value of 80% and persisting over a month would reflect a significant

and persistent change.

C. Detecting periods

Forecasting algorithms are dependent on the defined period of

the time-series. We utilized periodograms to identify the period

in case-study 1 and 3. However, the periods identified using the

periodogram often needed small adjustments in order to reflect the

right period as described in case-study 1. Also, in cases where

multiple periods were observed, the largest peak often referred to a

smaller period since its frequency of occurrence was higher than the

larger periods. Hence, instead of going by the period with the largest

peak, identifying the largest relevant period was more important. For

instance, when a time-series has both a Day/Night pattern as well

as a Weekday/Weekend pattern, the largest peak of the periodogram

would refer to the Day/Night pattern due to its frequency which would

result in the missing-out of the other pattern.

In case-study 4, the possible temporal dimensions of the domain

were well-defined. Hence, instead of using a periodogram, we used

domain knowledge of relevant temporal dimensions. We then iden-

tified the most influential dimensions and profiled them in order to

derive the period.

D. Confidence bands

Confidence bands are needed when the time-series are noisy and

can thus not be predicted accurately using point forecasts. We, hence,

introduced confidence bands in case-studies 2 and 3. In case-study 2,

there was a need to set different definitions of the width above and

below the best-fit line to provide a more accurate range of possible

values. The confidence bands were computed as a function of the

noise above and below the best-fit line. We could not use the same

approach in case-study 3 due to the presence of patterns. The data

points belonging to different temporal patterns exhibit different levels

of noise. We, hence, derived bands separately for each pattern.

VIII. CONCLUSION

While forecasting as a science is fairly advanced, converting theory

into practice is an interesting journey. We present our experience

through four such journeys on how to leverage the state-of-the-art

forecasting solutions to meet business objectives. We present case-

studies of the deployment in the domains of front-office transactional

systems of an insurance company, supply-chain management, IT

infrastructure support, and back-office batch system of banking

operations. We explain how each case-study varied in the data and

domain properties and had different forecasting needs and challenges.

While presenting these case-studies, we demonstrate how the state-

of-the-art solutions coupled with industry best practices can deliver

powerful solutions to meet forecasting needs of any business domain.
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