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ABSTRACT
The generalization of predictive models that follow the standard

risk minimization paradigm of machine learning can be hindered

by the presence of spurious correlations in the data. Identifying

invariant predictors while training on data from multiple envi-

ronments can influence models to focus on features that have an

invariant causal relationship with the target, while reducing the

effect of spurious features. Such invariant risk minimization ap-

proaches heavily rely on clearly defined environments and data

being perfectly segmented into these environments for training.

However, in real-world settings, perfect segmentation is challeng-

ing to achieve and these environment-aware approaches prove to
be sensitive to segmentation errors. In this work, we present an

environment-agnostic approach to develop generalizable models for

classification tasks in sequential datasets without needing prior

knowledge of environments. We show that our approach results in

models that can generalize to out-of-distribution data and are not

influenced by spurious correlations. We evaluate our approach on

real-world sequential datasets from various domains.
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1 INTRODUCTION
Machine learning models have been incorporated in multiple appli-

cation domains. While the increased adoption has led to consider-

able success, there have been numerous examples of the brittleness

of machine learning models in generalizing to out-of-distribution

data. This is partly due to being influenced by spurious correlations

and data biases that fail to hold outside training data distributions

[34, 41]. A classic example was highlighted by Beery et al. [5] where

a model, trained to classify images of cows in pastures and camels

in the desert, failed when the backgrounds were switched because

it was influenced by the spurious correlation (i.e., green pastures

with cows and sandy deserts with camels) rather than relying on

the invariant features (i.e., the cows and camels themselves).

There has been an increasing effort to improve the generaliza-

tion of these models to out-of-distribution data using different

approaches like meta-learning [6], adversarial learning [2], feature

representations [45], among others.

Invariant Risk Minimization (IRM) is a framework recently pro-

posed by Arjovsky et al. [4] that takes a different approach to the

problem of model generalization. It assumes that the training data

comes from multiple environments and that features whose dis-

tributions vary across the environments in the training data are

likely to also vary between the training and test datasets and hence

should be treated as spurious correlations. IRM identifies these

spurious features and learns robust predictors by exploiting the

varying degrees of spurious correlations present in the environ-

ments. Examples of environments can include images taken from

different geographic regions, sensor readings from different types

of sensors, or loans processed by different departments. The goal of

IRM is to find a data representation such that the optimal classifier

over this representation is identical or invariant over the train-

ing environments. There have been several extensions to the IRM

framework. For instance Ahuja et al. [1] propose a game theoretic

approach to IRM, while Krueger et al. [20] introduce the notion

of risk extrapolation to encourage strict equality between training

risks.

While these approaches have resulted in predictors that are effec-

tive in out-of-distribution generalization over a variety of datasets,

they suffer from two inherent weaknesses: First, they rely on the

assumption that the different training environments are known

apriori. Second, they require perfect segmentation of the training

data into these environments. In practice however, it can be chal-

lenging to identify the individual training environments, and there
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Figure 1: Comparing the sensitivity of Invariant Risk Min-
imization (IRM) to Empirical Risk Minimization (ERM) for
imperfect segmentation of data into environments. The test
accuracy of IRM degenerates to that of ERMwhen the train-
ing data cannot be segmented into environments.

can be errors in distinguishing data from different environments

resulting in imperfect segmentation of data.

To demonstrate the sensitivity of IRM to imperfect segmentation,

we use the Punctuated SST-2 dataset [9]. It consists of sentences

and their binary sentiment labels divided into two training envi-

ronments. A punctuation mark, either a ’!’ or ’.’, is introduced as a

spurious feature with an 80% and 90% correlation with each of the

binary sentiment labels in the two training environments respec-

tively, and only has a 10% correlation in the test environment. Any

model influenced by the punctuation feature rather than the sen-

tence while predicting the sentiment, would do well during training

but perform poorly at test time. To simulate imperfect segmentation

of data into the training environments, we “incorrectly" assign a

percentage of examples from the first environment to the second.

Figure 1 shows the resulting out-of-distribution accuracy on the

test environment by the IRM model as compared to a standard

Empirical Risk Minimization (ERM) model where the ERM model

tries to minimize the average loss over all training examples. We

observe that with perfect data segmentation (0% error), the IRM

model is not influenced by the spurious feature correlation and

achieves good generalization unlike the ERM model. However, as

the segmentation error increases, its accuracy drops significantly.

The IRM model becomes heavily influenced by the spurious punc-

tuation feature, as evidenced by the high training accuracy and

low out-of-distribution test accuracy. It converges to the accuracy

obtained by ERM when there is no difference in the spurious corre-

lations between the two segmented environments, thus achieving

poor generalization.

The example above highlights the drawbacks of such environment-
aware approaches. In this work, we address the drawbacks in the

setting of classification tasks for sequential data. Sequential data is

prevalent in many application domains including time-series analy-

sis, natural language processing, click-stream analysis, and business

process mining. The data consists of at least one sequential feature,

and may also have other features such as metadata, customer in-

formation, etc, which can be spuriously correlated with the target

variable. Motivated by this insight, we develop an environment-
agnostic approach to training robust classifiers for sequential data

which needs no prior information about environments nor any

segmentation. Our approach exploits the structure of sequential

data, and extends the IRM framework with a masking function that

continually detects and gradually removes spurious features from

the model during training, resulting in only the invariant features

remaining.

Our contributions can be summarized as follows:

• We present a framework to develop an Environment-Agnostic
Sequential Predictor (EASP) for classification tasks on se-

quential data, and formally prove the correctness of this

framework.

• To ensure the generalization of EASP, we develop a mask-

ing function that exploits the structure of sequential data

and variances in spurious correlations to identify invariant

features.

• We compare our framework to IRM and ERM on a variety

of sequential datasets from real-world domains, and demon-

strate through extensive evaluations the significant advan-

tage of EASP over those that require prior knowledge of the

training environments.

2 BACKGROUND
Consider a multi-environment sequential dataset consisting of E =

{𝑒1, ..., 𝑒𝑛} environments, each with a data distributionD𝑒
on 𝑋𝑒 ×

𝑌𝑒
, where 𝑋 is the set of input features and 𝑌 is the target variable.

The dataset contains at least one sequential feature 𝑋𝑠𝑒𝑞 ⊆ 𝑋 ,

where 𝑋𝑠𝑒𝑞 ∈ R1×𝑑
.

An invariant feature set 𝑋 𝐼
, is one where the target prediction

probability is consistent across all environments, (i.e.) 𝑝 (𝑌 |𝑋𝑖 ∈
𝑋 𝐼 , E) is approximately constant. Conversely, the spurious feature

set 𝑋𝑆
consists of features whose prediction probabilities vary

across environments due to the presence of data biases. It follows

that 𝑋 𝐼 ∪ 𝑋𝑆 = 𝑋 , and 𝑋 𝐼 ∩ 𝑋𝑆 = ∅, (i.e.) a feature cannot be both
invariant and spurious.

We define a risk function R𝑒 (𝜃 ) : R𝑛 → R which maps the

model parameters 𝜃 to the expected loss on D𝑒
for a given loss

function ℓ :

R𝑒 (𝜃 ) = E(𝑥𝑒 ,𝑦𝑒 )∼D𝑒 ℓ (𝑓𝜃 (𝑥𝑒 ), 𝑦𝑒 ) (1)

where 𝑥𝑒 ∈ 𝑋𝑒
and 𝑦𝑒 ∈ 𝑌𝑒

, and R𝑖 refers to the risk or expected

loss on the 𝑖𝑡ℎ environment.

The standard Empirical Risk Minimization (ERM) approach tries

to minimize the average loss over all training examples in an envi-

ronment agnostic manner:

RERM (𝜃 ) = E(𝑥,𝑦)∼∪𝑒∈ED𝑒 ℓ (𝑓𝜃 (𝑥), 𝑦) (2)

While Empirical Risk Minimization has been shown to work

well in practice for i.i.d. data [42], it can fail dramatically when test

environments and distributions differ significantly from training

environments [41].

Invariant Risk Minimization (IRM), proposed by Arjovsky et al.

[4], searches for an invariant representation of inputs from different

environments. The IRM principle states: "An invariant representation
Φ(𝑋 ) is one such that the optimal linear predictor𝑤 is the same across
all environments 𝑒𝑖 ∈ E". They show that finding the invariant

predictor,𝑤 ◦Φ, requires solving the following bi-level optimization
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problem:

min

Φ,𝑤

∑
𝑒∈E
R𝑒 (𝑤⊤Φ(𝑋𝑒 ))

s.t. 𝑤 ∈ argmin

�̄�
R𝑒 (�̄�⊤Φ(𝑋𝑒 )), ∀𝑒 ∈ E

However, since this optimization is highly intractable, particularly

when Φ is non-linear, they propose a tractable variant (IRMv1) :

min

Φ

∑
𝑒

R𝑒 (Φ(𝑋𝑒 )) + 𝜆∥∇𝑤R𝑒 (𝑤⊤Φ(𝑋𝑒 )∥2
2

(3)

where the weights 𝑤 are initialized to a vector of ones and

𝜆 ∈ [0,∞) is a regularizer that balances between predictive power

within an environment (ERM), and the invariance of the predictor

across environments.

One approach to determining whether the 𝑖th feature 𝑋𝑖 is spuri-

ous or invariant, is to measure the stability of its parameter weight

𝑤𝑖 . Javed et al. [18] show that if 𝑋𝑖 is an invariant feature,𝑤𝑖 con-

verges to a fixed magnitude, (i.e.) E[𝑌 |𝑋𝑖 ] = 𝑐 for some constant

value 𝑐 , across all training iterations. Whereas if E[𝑌 |𝑋𝑖 ] is chang-
ing,𝑤𝑖 would keep changing as well, and hence spurious features

have parameter weights that exhibit high variance. This definition

is equivalent to learning features whose correlations with the target

variable are stable.

3 FORMULATION
We leverage the above intuition while developing EASP for sequen-

tial data. We first make the following assumption for classification

tasks on sequential datasets:

Assumption 1. A sequence classification task has a non-empty set of
sequential features 𝑋𝑠𝑒𝑞 ⊆ 𝑋 that is predictive of the target variable
and is hence invariant with respect to the target 𝑌 .

Note that we do not assume the degree of invariance, and make

no assumptions on whether other features are invariant or spurious,

and hence the model can still be influenced by spurious correlations.

The assumption of the existence of an invariant feature set for

prediction is common and similar to that of Peters et al. [31], but

may not apply in all cases. We present empirical results in Section

4.8 showing that our approach still results in a generalized model

(c.f. Table 7) when this assumption does not hold and the sequence

feature is not predictive.

Based on the intuition outlined in Section 2 – spurious features

have weights that exhibit high variance – we define a masking

function 𝑔(𝑋 ) over 𝑋 . The goal of the function is to measure the

variances of the feature weights while training over mini-batches

of data, and gradually remove spurious features while retaining

invariant ones. Formally:

𝑔(𝑋𝑖 ) →
{
𝑋𝑖 if 𝑋𝑖 is invariant

0 if 𝑋𝑖 is spurious
,∀𝑋𝑖 ∈ 𝑋 (4)

where 𝑔 is a monotonic function and the image of 𝑔 ∈ [0, 1]. We

note that the IRMv1 representation in equation (3) is equivalent to

having the identity function I as a mask over 𝑋𝑒
, i.e., Φ(I(𝑋𝑒 )).

We measure the variance of the weights of each feature 𝑋𝑖 ∈ 𝑋
using a set of masksM = {𝑚1, ...,𝑚𝑘 },𝑚𝑖 ∈ R, where 𝑘 is the num-

ber of features in 𝑋 . The masks are updated with two objectives:

(a) Use the variances to emphasize invariant features and suppress

spurious ones, and (b) Exploit the sequential structure and invari-

ance of 𝑋𝑠𝑒𝑞
based on Assumption 1. During each training epoch,

we first update the masks as:

𝑚𝑖 ←𝑚𝑖 + 𝜇 (𝑣 (w)) − 𝛼 (𝑣 (𝑤𝑖 )), ∀𝑚𝑖 ∈ M (5)

where 𝜇 (𝑣 (w)) is the average variance observed over all features

in 𝑋 , 𝑣 (𝑤𝑖 ) is the variance of the weights of feature 𝑋𝑖 , and hyper-

parameter 𝛼 is a scaling factor. Intuitively, the masks of invariant

features gain in value over the training epochs since their variance

𝑣 (𝑤𝑖 ) is very low. Masks of spurious features on the other hand

become negative, since the variance of their weights, coupled with

the scaling factor is larger than the average which is brought down

by invariant features. We then achieve the second objective by

updating the masks M𝑠𝑒𝑞
of 𝑋𝑠𝑒𝑞

as:

𝑚
𝑠𝑒𝑞

𝑖
← |𝑚𝑠𝑒𝑞 |, ∀𝑚𝑠𝑒𝑞

𝑖
∈ M𝑠𝑒𝑞 ⊆ M (6)

where | · | is the absolute function, which exploits Assumption

1 and ensures the invariance of 𝑋𝑠𝑒𝑞
. The degree of invariance

is still dependent on the magnitude of variance exhibited by the

weights of 𝑋𝑠𝑒𝑞
. Since the values of M are unbounded, we scale the

masks by using the sigmoid function 𝜎 . Since the sigmoid function

is bounded between [0,1], 𝜎 (M) satisfies equation (4). We then find

an environment agnostic sequential predictor Z by solving:

min

Z
R(Z) + 𝜆∥∇𝑤R(𝑤⊤Z)∥22 , s.t. Z = 𝜎 (M) ⊙ 𝑋 . (7)

where ⊙ denotes element-wise multiplication and 𝜎 (M) ∈ [0, 1].
The penalty term here serves to balance the predictive power and

invariance of the predictor over the entire training data as opposed

to over each training environment. Our entire generalization ap-

proach is shown in Algorithm 1.

In order to prove that the masking function and environment

agnostic predictor Z in equation (7) results in a generalized model

for out-of-distribution data, we formulate it as a minimax problem

in Theorem 1 and show that our solution minimizes the risk or

loss using invariant features, even under the most adverse test

environment.

Theorem 1. Given a training environment 𝑒𝑡𝑟 , and a test environ-
ment 𝑒𝑡𝑒𝑠𝑡 , the set of invariant features 𝑋 𝐼 is the saddle point of the
following minimax problem

𝑋 𝐼 = min

Z
max

𝑋 𝐼 ,𝑋𝑆
Ltest (Z ;𝑋 𝐼 , 𝑋𝑆 ) , where Z = 𝜎 (M) ⊙ 𝑋 ,

where L𝑡𝑒𝑠𝑡 is the cross-entropy loss in the test environment, and
𝑋 𝐼 , 𝑋𝑆 denote the set of invariant and spurious features respectively
such that 𝑋 𝐼 ∪ 𝑋𝑆 = 𝑋 , and 𝑋 𝐼 ∩ 𝑋𝑆 = ∅ (i.e.) they are disjoint.

Proof. For every Z, we can partition it into invariant variables

Z𝐼 and non-invariant variables Z𝑆 as:

Z𝐼 = 𝜎 (M) ⊙ 𝑋 𝐼 , Z𝑆 = 𝜎 (M) ⊙ 𝑋𝑆 . (8)

Consider a test distribution or environment where the set of

spurious features 𝑋𝑆∗
are not predictive of the output 𝑌 , and only

the invariant features 𝑋 𝐼
are predictive of 𝑌 , (i.e.)

𝑝 (𝑌 |Z, 𝑒𝑡𝑒𝑠𝑡 ) = 𝑝 (𝑌 |Z𝐼 , 𝑒𝑡𝑒𝑠𝑡 ), 𝑝 (𝑌 |Z, 𝑒𝑡𝑟 ) = 𝑝 (𝑌 |Z𝐼 , 𝑒𝑡𝑟 ) (9)
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Algorithm 1 Environment Agnostic Sequential Predictor

Require: Distribution over inputs 𝑋 and targets 𝑌 ;

Require: 𝑠: Total learning steps. 𝑓𝜃 : Function to learn; 𝑋𝑠𝑒𝑞
: Se-

quence features

Require: 𝑠𝑖𝑛𝑖𝑡 : Warm up steps. L: Cross-Entropy loss

Require: 𝛾 : Learning rate; 𝛼 : Scaling factor;

Require: 𝜃 = (𝑤1, ...,𝑤𝑛): Classifier weights; M = (𝑚1, ...,𝑚𝑛):
Mask weights;

1: Initialize𝑚 𝑗 = −1, ∀𝑗 : 1→ 𝑛

2: Initialize mean u = (𝑢1, ..., 𝑢𝑛) = 0

3: Initialize variance v = (𝑣1, ..., 𝑣𝑛) = 0

4: for 𝑖 = 1→ 𝑠 do
5: Sample batch x, y ⊲ Environment Agnostic

6: ℓ = L(𝑓 (𝜎 (M) × X), 𝑦) ⊲ Prediction error from equation 7

7: 𝑙1 = ∥𝜃 ∥1 ⊲ 𝑙1 penalty loss

8: 𝑙𝑖𝑟𝑚 = 𝐼𝑟𝑚𝑃𝑒𝑛𝑎𝑙𝑡𝑦 (x, y) ⊲ Penalty from equation 7

9: 𝑙𝑓 𝑖𝑛𝑎𝑙 = ℓ + 𝑙1 + 𝑙𝑖𝑟𝑚 ⊲ Total loss

10: 𝜃 = 𝜃 − 𝛾∇𝜃𝑙𝑓 𝑖𝑛𝑎𝑙
11: u𝑜𝑙𝑑 = u
12: u = 𝛽𝜃 + (1 − 𝛽)u𝑜𝑙𝑑 ⊲ Mean estimate

13: v = 𝛿v + (1 − 𝛿) (𝜃 − u𝑜𝑙𝑑 )2 ⊲ Variance Estimate

14: if 𝑖 > 𝑠𝑖𝑛𝑖𝑡 then
15: 𝑚 𝑗 += 𝜇 (𝑣 (w)) − 𝛼 (𝑣 (𝑤 𝑗 )), ∀𝑚 𝑗 ∈ M ⊲ Update mask

16: 𝑚
𝑠𝑒𝑞

𝑗
= |𝑚𝑠𝑒𝑞 |, ∀𝑚𝑠𝑒𝑞

𝑗
∈ M𝑠𝑒𝑞 ⊆ M ⊲ Assumption 1

17: end if
18: end for

Therefore,

L𝑡𝑒𝑠𝑡 (Z ;𝑋 𝐼 , 𝑋𝑆∗) = 𝐻 (𝑝 (𝑌 |Z, 𝑒𝑡𝑒𝑠𝑡 );𝑝 (𝑌 |Z, 𝑒𝑡𝑟 ))
(𝑖)
= 𝐻 (𝑝 (𝑌 |Z𝐼 , 𝑒𝑡𝑒𝑠𝑡 );𝑝 (𝑌 |Z𝐼 , 𝑒𝑡𝑟 ))
(𝑖𝑖)
= 𝐻 (𝑝 (𝑌 |𝜎 (M) ⊙ 𝑋 𝐼 , 𝑒𝑡𝑒𝑠𝑡 );𝑝 (𝑌 |𝜎 (M) ⊙ 𝑋 𝐼 , 𝑒𝑡𝑟 ))
(𝑖𝑖𝑖)
= 𝐻 (𝑝 (𝑌 |𝑋 𝐼 , 𝑒𝑡𝑒𝑠𝑡 );𝑝 (𝑌 |𝑋 𝐼 , 𝑒𝑡𝑟 ))

= L𝑡𝑒𝑠𝑡 (𝑋 𝐼
;𝑋 𝐼 , 𝑋𝑆∗)

(10)

where 𝐻 (·) is the cross-entropy loss function. Step (𝑖) is obtained
from applying equation (9). Step (𝑖𝑖) is obtained by applying equa-

tion (8), and step (𝑖𝑖𝑖) is due to the property of the masks from

equation (4).

Recall that𝑋𝑆∗
was assumed to be non-predictive of 𝑌 . However,

in most cases, the spurious feature 𝑋𝑆
would have some predictive

power over 𝑌 in the training environment. Hence, from the defini-

tion of spurious features 𝑋𝑆
, their biased influence on the model

performance during training will lead to an increased loss in the

worst case test environment:

max

𝑋𝑆
L𝑡𝑒𝑠𝑡 (Z;𝑋 𝐼 , 𝑋𝑆 ) ≥ L𝑡𝑒𝑠𝑡 (Z;𝑋 𝐼 , 𝑋𝑆∗)

(11)

Recall𝑋 𝐼
denotes the set of invariant features, thus 𝑝 (𝑌 |𝑋 𝐼 , 𝑒𝑡𝑒𝑠𝑡 )

does not depend on 𝑋𝑆
. Therefore,

max

𝑋𝑆
L𝑡𝑒𝑠𝑡 (𝑋 𝐼

;𝑋 𝐼 , 𝑋𝑆 ) = L𝑡𝑒𝑠𝑡 (𝑋 𝐼
;𝑋 𝐼 , 𝑋𝑆∗)

(12)

By combining equations (10), (11), and (12), we have:

max

𝑋𝑆
L𝑡𝑒𝑠𝑡 (Z;𝑋 𝐼 , 𝑋𝑆 ) ≥ max

𝑋𝑆
L𝑡𝑒𝑠𝑡 (𝑋 𝐼

;𝑋 𝐼 , 𝑋𝑆 ) (13)

The above formulation holds for all 𝑋 𝐼
. Hence, taking the maxi-

mum over 𝑋 𝐼
in equation (13) preserves the inequality,

max

𝑋 𝐼 ,𝑋𝑆
L𝑡𝑒𝑠𝑡 (Z;𝑋 𝐼 , 𝑋𝑆 ) ≥ max

𝑋 𝐼 ,𝑋𝑆
L𝑡𝑒𝑠𝑡 (𝑋 𝐼

;𝑋 𝐼 , 𝑋𝑆 )

which in turn implies,

𝑋 𝐼 = min

Z
max

𝑋 𝐼 ,𝑋𝑆
L𝑡𝑒𝑠𝑡 (Z;𝑋 𝐼 , 𝑋𝑆 )

□

4 EXPERIMENTS
In this section, we present an extensive evaluation of our approach

on five different sequential datasets spanning multiple application

domains: natural language processing (NLP), temporal sequences,

and business process mining (Table 1). Similar to prior work [1, 4, 9,

20], we augment these benchmark datasets with spurious features.

We assess the quality of generalization as the classification accuracy

obtained on the test environment, disjoint from the set of training

environments. We also present results from an ablation study of the

masking function as well as additional experiments that highlight

the robustness of our approach.

Dataset Train Seq. Test Seq. Classes #Spurious

SST-2 67,350 873 2 1

AG News 120,000 7600 4 1

HAR 7352 2947 6 2

BPIC 2018 306,615 63,692 14 1

BPIC 2019 56,736 26,499 12 2

Table 1: Summary of Datasets

4.1 Benchmarks
We compare our Environment Agnostic Sequential Predictor (EASP)

to four benchmark approaches:

• Empirical Risk Minimization (ERM): Standard classifier that

minimizes the average loss over the entire training data.

• Invariant Empirical RiskMinimization (Inv-ERM): ERM trained

on data without any spurious features. This approach reflects

the setting where spurious correlations are not present.

• Invariant Risk Minimization (IRMv1): Environment-aware

predictor proposed by Arjovsky et al. [4]. While Ahuja et al.

[1], Krueger et al. [20] have built on this and achieved similar

or slightly better results, they are also environment-aware

approaches. Hence, we use the original IRMv1 approach as

a representative for environment-aware approaches.

• IRMv1 with 5% segmentation error (IRM5%): Measure of the

performance of IRMv1 when there is a 5% error in correctly

segmenting the training data into different environments.

4.2 Implementation Details
We implement our EASP approach and the ERM approach using the

PyTorch library [28]. We implement the Invariant Risk Minimiza-

tion approach of Arjovsky et al. [4] based on their publicly available
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code
1
. We preprocess the datasets used in the paper similar to Choe

et al. [9]
2
and describe them in detail below.

Hyper-parameter Range

Learning rate [10
−5, 10

−1
]

Steps [101, 501]

Regularization weight [10
−6, 10

−2
]

Penalty [10, 10
4
]

Scaling factor [10
−2, 10]

Table 2:Hyper-parameter ranges tried for all comparison ap-
proaches

For each dataset, we tried both MLP and LSTM classifiers of

different architectures and selected the model that performed the

best. In each dataset, we used the same model architecture for all

five approaches (ERM, Inv-ERM, EASP, IRMv1, IRM5%) to ensure

a fair comparison. All experiments were done on a 6-core i7 CPU

with 32GB memory. We used the cross-entropy loss for classifi-

cation during training and the Adam optimizer. We searched for

hyper-parameters based on the values in Table 2, and chose the con-

figurations with the best performance for each of the approaches.

The results reported are the average over 10 runs. Appendix A

provides additional implementation details.

4.3 Natural Language Processing
Text classification models learn from sequences of text (sentences,

paragraphs, documents, etc.) and assign them into categories. These

sequences can be augmented by other features, such as the source of

text and length of the sequence, which could be spurious. Several pa-

pers [16, 26] have shown how the presence of spurious correlations

in text can cause state-of-the-art NLP models to make mistakes and

fail to generalize to out-of-distribution data.

4.3.1 Punctuated SST-2: We modify the Stanford Sentiment Tree-

bank (SST-2) [37], a benchmark dataset for binary sentiment analy-

sis in a similar manner as Choe et al. [9]. The dataset consists of

67350 texts and their associated sentiment for training and 873 for

testing. We split the training set into two balanced subsets (envi-

ronments) and treat the test data as a third OOD environment and

corrupt each label with a probability 𝜂𝑒 = 0.25. We add a spurious

feature 𝑋𝑠 by pairing each sentiment with a punctuation mark (. or

!) as follows:

𝑝 (𝑋𝑠 = . |𝑌 = 0, 𝑒𝑖 ) = 𝑝 (𝑋𝑠 = ! |𝑌 = 1, 𝑒𝑖 ) = 𝛼𝑖

𝑝 (𝑋𝑠 = ! |𝑌 = 0, 𝑒𝑖 ) = 𝑝 (𝑋𝑠 = . |𝑌 = 1, 𝑒𝑖 ) = 1 − 𝛼𝑖

Here 𝑒𝑖 refers to each environment and we set 𝛼0 = 0.8, 𝛼1 = 0.9,

and 𝛼OOD = 0.1. The addition of the punctuation mark as a separate

feature, and not as part of the sentence as in Choe et al. [9], allows

us to isolate the sentence sequence embeddings to mask, while still

preserving the structure and meaning of the sentence.

Table 3 shows the mean accuracies obtained by the different

approaches. The standard ERM based model is highly reliant on

the spurious correlations and achieves poor generalization, as ev-

idenced by the low test (9.6%) but high training (85.6%) accuracy.

1
https://github.com/facebookresearch/InvariantRiskMinimization

2
https://github.com/kakaobrain/irm-empirical-study

Inv-ERM which represents the accuracy when trained on data with-

out spurious correlations achieves 62.7%. Our EASP approach ig-

nores the spurious correlation and achieves 61.2% accuracy, which is

similar to IRMv1 (60.2%) while importantly remaining environment-

agnostic unlike IRMv1. This difference grows larger when there

are data segmentation errors as reflected by IRM5% which achieves

57.5% test accuracy.

4.3.2 Punctuated AG News: To evaluate our approach for multi-

class NLP predictions, we use the AG News dataset [47], which

consists of a corpus of news articles and their titles that have been

classified into four categories - (1) World, (2) Sports, (3) Business,

and (4) Sci/Tech. There are 30,000 training and 1,900 test examples

for each class. Similar to the Punctuated SST-2 dataset, we split the

training data into two balanced environments and treat the test

data as a third OOD environment and add a spurious feature 𝑋𝑠
that pairs each news category with a punctuation mark in the set

P = {. ! @ ∧} as follows:

𝑝 (𝑋𝑠 = . |𝑌 = 0, 𝑒𝑖 ) = 𝑝 (𝑋𝑠 = ! |𝑌 = 1, 𝑒𝑖 ) = 𝛼𝑖

𝑝 (𝑋𝑠 =@ |𝑌 = 2, 𝑒𝑖 ) = 𝑝 (𝑋𝑠 = ∧ |𝑌 = 3, 𝑒𝑖 ) = 𝛼𝑖

𝑝 (𝑋𝑠 = rand(P \ P𝑗 ) |𝑌 = 𝑦 𝑗 , 𝑒𝑖 ) = 1 − 𝛼𝑖

where P𝑗 is the 𝑗𝑡ℎ punctuation mark and rand(P \ P𝑗 ) repre-
sents a random punctuation mark selected among the remainder.

We set 𝛼0 = 0.8, 𝛼1 = 0.9, and 𝛼OOD = 0.1. From Table 3 we observe

that ERM again relies on the spurious correlation, achieving 63.4%

test accuracy. EASP achieves an OOD accuracy of 80.8%, close to

Inv-ERM which achieves 83.8%. It also outperforms IRMv1 and

IRM5% which achieve 76.9% and 75.0% accuracy on the OOD test

dataset, respectively.

Algorithm SST-2 AG News

Train Test Train Test

ERM 85.6 ± 0.1 9.6 ±0.3 92.3 ± 0.1 63.4 ±0.5

IRMv1 62.8 ±1.8 60.2 ±2.1 87.8 ±0.2 76.9 ±0.3

IRM5% 62.4 ±1.1 57.5 ±2.5 88.2 ±0.4 75.0 ±1.2

EASP(ours) 63.2 ±0.2 61.2 ± 1.1 80.9 ±0.1 80.8 ± 0.2

Inv-ERM 63.4 ±0.1 62.7 ±1.1 84.0 ±0.1 83.8 ±0.3

Table 3: Punctuated SST-2 and Punctuated AG News train
and test accuracy comparison.

4.4 Temporal Sequences
Sequential predictions of time-series data have a lot of applications

in different domains, including financial predictions, customer be-

haviour based on their clickstreams, predictions using sensor data

sequences, etc. Moe and Fader [27] have shown that features like

average browsing time and number of clicks in clickstream data

can have spurious correlations with the likelihood of purchase.

Temporal sequences collected from distributed and heterogeneous

sensor sources can also contain spurious correlations due to loca-

tion, weather, etc [21].

4.4.1 ColoredHAR:. TheHumanActivity Recgonition (HAR) dataset

[3] consists of smartphone accelerometer and gyroscope readings
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Algorithm HAR

Train Test

ERM 98.1 ±0.3 73.2 ±2.2

IRMv1 97.6 ±1.4 86.9 ±1.0

IRM5% 97.9 ±1.2 78.9 ±1.9

EASP(ours) 94.2 ±1.0 87.5 ± 1.6

Inv-ERM 94.3 ±0.4 89.3 ±0.8

Table 4: Colored Human Activity Recognition (HAR) train
and test accuracy comparison

corresponding to six activities (walking, standing, sitting, etc.)

performed by participants. The data consists of sequences of 128

timesteps of sensor readings which correspond to a particular ac-

tivity. We split the training examples (7352 sequences) into two

balanced environments and treat the test examples (2947 sequences)

as a third OOD environment. To evaluate our approach in settings

where more than one spurious feature 𝑋𝑠 are present, we “color"

each activity with a unique value (𝑋 1

𝑠 ) similar to the Colored MNIST

dataset [4], and also assign a unique sensor type for each activity

(𝑋 2

𝑠 ) as follows:

𝑝 (𝑋 1

𝑠 = 𝑐 𝑗 |𝑌 = 𝑦 𝑗 , 𝑒𝑖 ) = 𝑝 (𝑋 2

𝑠 = 𝑠 𝑗 |𝑌 = 𝑦 𝑗 , 𝑒𝑖 ) = 𝛼𝑖

𝑝 (𝑋 1

𝑠 = 𝑐 ( 𝑗+1) mod | 𝑗 | |𝑌 = 𝑦 𝑗 , 𝑒𝑖 ) = 1 − 𝛼𝑖
𝑝 (𝑋 2

𝑠 = 𝑠 ( 𝑗+1) mod | 𝑗 | |𝑌 = 𝑦 𝑗 , 𝑒𝑖 ) = 1 − 𝛼𝑖

Here, we assign a unique color 𝑐 𝑗 and sensor type 𝑠 𝑗 to each

activity 𝑦 𝑗 with probability 𝑝 =𝛼𝑖 , and assign another with prob-

ability 𝑝 = 1 − 𝛼𝑖 for each environment 𝑒𝑖 , where 𝑐 𝑗 , 𝑠 𝑗 ∈ [0, 1].
We set 𝛼0 = 0.8, 𝛼1 = 0.9, and 𝛼OOD = 0.1. The relatively high

accuracies shown in Table 4 reflects the inherent predictive power

of the invariant sensor features in identifying each activity, hence

diminishing the impact of the spurious features. However, ERM

is still influenced by the spurious correlation achieving 73.2% test

accuracy, compared to 89.3% achieved without spurious features by

Inv-ERM. Our EASP approach continues to result in a generalized

model with 87.5% OOD test accuracy, similar to IRMv1 with 86.9%.

However, there is a significant drop in accuracy of IRM even with

small data segmentation errors, where IRM5% only achieves 78.9%

test accuracy, further highlighting the advantage of an environment-

agnostic approach like EASP.

4.5 Business Process Traces
Business processes form an integral part of many enterprise opera-

tions including loan applications, insurance claims, hospital records

management, etc. Process traces consist of sequences of events cor-

responding to activities occurring in each process (e.g. credit score

check, patient discharge, etc.), and each trace can result in differing

sequences based on the process features and the business logic of

the process variant it belongs to. The goal is to accurately predict

the next event in trace sequences of varying lengths, where spu-

rious correlations can exist in the business process features, e.g.,

patient gender and discharge rate [7, 10]. We use two real-world

event logs from enterprises provided as part of the Business Process

Intelligence Challenge (BPIC) series.

4.5.1 Augmented BPIC 2018: The dataset
3
consists of payment

applications from German farmers to the European Agricultural

Guarantee Fund collected over a period of three years. Each appli-

cation is processed by one of four departments, and to evaluate our

approach in a multi-environment setting, we consider each depart-

ment as an environment and use three environments for training

and the fourth as OOD test data. We consider two business process

variants and augment the process trace sequences with a spurious

feature 𝑋𝑠 denoting the area of the farm as a continuous value in

[500, 10000] hectares. We cluster the area into low (𝐿) and high (𝐻 )

values and spuriously correlate them to the two business process

variants (A,B) as follows:

𝑝 (𝑋𝑠 ∈ 𝐻 |𝑌 ∈ A, 𝑒𝑖 ) = 𝑝 (𝑋𝑠 ∈ 𝐿 |𝑌 ∈ B, 𝑒𝑖 ) = 𝛼𝑖

𝑝 (𝑋𝑠 ∈ 𝐿 |𝑌 ∈ A, 𝑒𝑖 ) = 𝑝 (𝑋𝑠 ∈ 𝐻 |𝑌 ∈ B, 𝑒𝑖 ) = 1 − 𝛼𝑖

We set 𝛼0 = 0.85, 𝛼1 = 0.9, 𝛼2 = 0.95, and 𝛼OOD = 0.1, and

evaluate on trace sequence lengths ranging from 5 to 10. Figure 2a,

shows that our EASP model – unlike ERM – is not influenced by

the spurious correlations and performs comparably with Inv-ERM.

Furthermore our approach outperforms IRMv1 over all sequence

lengths by 4% on average and IRM5% by 7%.

4.5.2 Augmented BPIC 2019: The dataset
4
consists of purchase

orders from a company in the Netherlands. Each order consists of

multiple items and goes through several vendors reflecting their

payments, invoices, and receipts. We consider two process variants

and split the training data (56736 sequences) into two balanced

environments and consider the test data (26499 sequences) as a

third OOD environment. We augment the process sequences with

two spurious features (𝑋 1

𝑠 , 𝑋
2

𝑠 ) : item type (I = {I1,I2}) and item

valuation (𝐿 ∈ [$500, $5000], 𝐻 ∈ [$50000, $100000]), whose values
are spuriously correlated with the two business process variants

(A,B) as follows:

𝑝 (𝑋 1

𝑠 = I1 |𝑌 ∈ A, 𝑒𝑖 ) = 𝑝 (𝑋 1

𝑠 = I2 |𝑌 ∈ B, 𝑒𝑖 ) = 𝛼𝑖

𝑝 (𝑋 1

𝑠 = I2 |𝑌 ∈ A, 𝑒𝑖 ) = 𝑝 (𝑋 1

𝑠 = I1 |𝑌 ∈ B, 𝑒𝑖 ) = 1 − 𝛼𝑖
𝑝 (𝑋 2

𝑠 ∈ 𝐻 |𝑌 ∈ A, 𝑒𝑖 ) = 𝑝 (𝑋 2

𝑠 ∈ 𝐿 |𝑌 ∈ B, 𝑒𝑖 ) = 𝛼𝑖

𝑝 (𝑋 2

𝑠 ∈ 𝐿 |𝑌 ∈ A, 𝑒𝑖 ) = 𝑝 (𝑋 2

𝑠 ∈ 𝐻 |𝑌 ∈ B, 𝑒𝑖 ) = 1 − 𝛼𝑖

Here we set 𝛼0 = 0.8, 𝛼1 = 0.9, and 𝛼OOD = 0.1 and evaluate the

models on trace sequence lengths ranging from 3 to 8. Figure 2b

shows that ERM is heavily influenced by the spurious correlations,

while EASP achieves good generalization and outperforms IRMv1

by 5% and IRM5% by 8% on the OOD test set on average over all

sequence lengths.

4.6 Ablation Study
We perform an ablation experiment to measure the contribution

of our masking function and each of its components on the per-

formance of EASP as shown in Table 5. For the business process

datasets, we set the trace sequence length to 7. We first remove the

masking function 𝜎 (M), essentially reducing the EASP formulation

in equation (7) to an environment-agnostic version of IRMv1. This

is reflected by the accuracy values which are similar to those of

3
https://data.4tu.nl/articles/BPI_Challenge_2018/12688355

4
https://data.4tu.nl/articles/BPI_Challenge_2019/12715853
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(a) Augmented BPIC 2018 (b) Augmented BPIC 2019

Figure 2: Business Process Traces event classification, train and test accuracy comparison

Algorithm Test Accuracy (%)

SST-2 AG News HAR BPIC’18 BPIC’19

EASP 61.2 80.8 87.5 88.4 92.0

− 𝜎 (M) 9.6 60.5 72.9 76.1 71.5

− |M𝑠𝑒𝑞 | 52.1 24.9 18.2 19.8 35.1

− scaling (𝛼) 9.6 53.6 74.7 84.0 72.1

Table 5: Ablation Study

Dataset Test Accuracy After |𝑀 |
All Spurious Sequence None

(|M|) (|M𝑆 |) (|M𝑠𝑒𝑞 |) (|M𝜙 |)
SST-2 9.6 9.6 61.2 52.1

AG News 55.9 9.9 80.8 24.9

HAR 74.6 17.5 87.5 18.2

BPIC’18 82.0 19.8 86.5 19.8

BPIC’19 76.0 39.6 92.0 35.1

Table 6: Impact of selecting right features for |M|

ERM, thus demonstrating that the masking function is the reason

for an environment-agnostic predictor. Second, we do not leverage

Assumption 1 of setting an invariant |M𝑠𝑒𝑞 | and observe that there

is a significant drop in accuracy in most of the datasets. This can

be attributed to the masking function being unable to accurately

measure the variance of the sequence as whole. Third, we remove

the scaling factor from the mask updation, and see that it also has

an impact on all datasets because the degree of spuriousness may

not get fully captured, and hence the model can get influenced by

spurious features.

4.7 Selecting the Right Features for |M|
While we have shown the effectiveness of updating the mask of

the sequence feature with |M𝑠𝑒𝑞 |, we perform an experiment to

measure the performance if this was applied to the masks of other

features in the data. For each dataset, we apply the absolute function

to all masks (|M|), only those of the spurious features (|M𝑆 |), the
sequence feature (|M𝑠𝑒𝑞 |), and if it was not applied at all (|M𝜙 |)
which was shown in the ablation study.

Figure 3: Sensitivity of EASP, IRMv1, and ERM to imperfect
segmentation of data for Punctuated SST-2

From Table 6, we see that selecting the right masks to update

with the absolute function has an impact on the OOD test accuracy.

Across all datasets, updating spurious feature masks with |M𝑆 | re-
sults in very low accuracies since the masking function considers

them to now have some predictive power. Along the same lines,

doing this for all features (|M|), does not perform as well as |M𝑠𝑒𝑞 |,
since the model still gets influenced to some degree by the spuri-

ous features. Hence, using Assumption 1 allows us to exploit the

sequential data structure to result in a model that generalizes well.

4.8 Robustness of EASP
4.8.1 Imperfect segmentation of environments: For the same moti-

vating example in Figure 1, we measure the performance of EASP

when the data are imperfectly segmented into the different train-

ing environments for the Punctuated SST-2 dataset. As before, we

set 𝛼0 = 0.8, 𝛼1 = 0.9, and 𝛼OOD = 0.1. Figure 3, shows that our

EASP approach is robust to spurious correlations irrespective of

the degree of imperfect data segmentation, unlike IRMv1 and ERM.

4.8.2 Sequence feature is not predictive: We evaluate the perfor-

mance of EASP when Assumption 1 (i.e. there exists a sequential

feature that is predictive of the target variable) does not hold. In

our Punctuated SST-2 dataset, we set the invariant correlation of

the text with respect to the sentiment to be 0.5 by changing the

probability of label switching (𝜂𝑒 ). We again set 𝛼0 = 0.8, 𝛼1 = 0.9,

and 𝛼OOD = 0.1. From Table 7 we see that the OOD test accuracy of
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Algorithm Train Acc. Test Acc.

ERM 85.4 ±0.3 9.6 ±0.0

IRMv1 52.1 ±0.5 42.8 ±2.0

IRM5% 52.8 ±0.4 40.3 ±1.7

EASP (ours) 51.1 ±1.1 52.4 ± 2.3

Inv-ERM 50.0 ±0.1 54.5 ±0.0

Table 7: Sequence is not predictive

Algorithm Train Acc. Test Acc.

ERM 70.3 ±0.3 31.4 ±0.3

IRMv1 61.5 ±0.5 61.0 ± 1.2
IRM5% 62.1 ±0.4 58.1 ±1.5

EASP (ours) 63.1 ±0.2 61.0 ± 1.1

Inv-ERM 63.4 ±0.1 62.7 ±1.1

Table 8: Invariant correlation stronger than spurious

EASP, IRMv1, IRM5% and Inv-ERM all drop close to random chance

(50%) reflecting the randomness now associated with the invariant

correlation. This also shows that EASP outperforms IRMv1 and

IRM5% and still continues to be robust to the spurious correlation

unlike ERM.

4.8.3 Invariant correlation is stronger than spurious: We compare

the performance of the algorithms for cases where the spurious

correlation exists in the dataset but the strength of the invariant

correlation is stronger. For the Punctuated SST-2 dataset, we set the

invariant correlation to be 0.75 by changing 𝜂𝑒 and set the spurious

correlations to be 𝛼0 = 0.6 and 𝛼1 = 0.7. The OOD spurious corre-

lation is kept as 𝛼OOD = 0.1. From Table 8, we see that while the

accuracy of ERM improves now that the influence of the spurious

features are reduced, it still fails to completely ignore the spurious

correlation. Both EASP and IRMv1 perform similarly and return

generalized models.

4.8.4 Varying Number of Training Environments. We measure the

robustness of EASP to varying numbers of training environments

in the Punctuated SST-2 dataset. We set the maximum and mini-

mum values of 𝛼𝑖 as 0.7 and 0.9 respectively and spread out the

environments evenly. Table 9 shows that EASP continues to return

a generalized model, and the variance in EASP’s performance is

similar to IRMv1, IRM5% and Inv-ERM even when the number of

environments increases.

5 RELATEDWORK
There are various approaches to improving out-of-distribution gen-

eralization of deep learning models. Causal model discovery [17, 29]

aims to find an underlying causal graph to obtain an invariant

feature set that is a causal predictor of the target. Invariant Risk

Minimization [4] is an optimization based improvement that allows

searching over transformations in a continuous space.

Data augmentation techniques are also popular and aim to make

the model more robust by training using instances obtained from

Algorithm Number of Environments

2 4 6 8

ERM 9.6 9.7 9.2 9.4

IRMv1 60.5 60.4 61.0 60.0

IRM5% 58.1 56.1 57.3 58.6

EASP (ours) 61.2 61.0 61.0 61.1

Inv-ERM 62.7 61.6 62.4 62.2

Table 9: Varying Number of Environments

neighbouring domains hallucinated from the training domains,

and thus make the network ready for these neighbouring domains.

Shankar et al. [36] augment data using instances perturbed along

directions of domain change and use a second classifier to capture

this. Volpi et al. [44] apply this to single domain data, while Car-

lucci et al. [8] apply augmentation to images during training by

simultaneously solving an auxiliary unsupervised jigsaw puzzle

alongside.

Decomposition based approaches represent the parameters of the

network as the sum of a common parameter and domain-specific

parameters during training [11]. Khosla et al. [19] applied decom-

position to domain generalization by retaining only the common

parameter for inference. Li et al. [23] extended this work to CNNs

where each layer of the network was decomposed into common

and specific low-rank components. Piratla et al. [32] recently pro-

posed a more efficient approach that decomposes only the last layer,

imposes loss on both the common and domain-specific parameters,

and constrains the two parts to be orthogonal.

Another approach is to pose the domain generalization problem

as a meta-learning task, whereby we update parameters using meta-

train loss but simultaneously minimizing meta-test loss [22]. Prior

work onmeta-learning has been studied either in the context of few-

shot supervised learning methods which adapt using small amounts

of labeled data from the new domain [13, 33, 35], distribution shifts

in only test domains [12, 46], or only considering label shifts [25, 39].

Other approaches include adversarially learning representations

that are invariant with respect to domain-specific features using per-

turbations [2, 41] as well as domain erasure methods which estimate

features that have the same distribution across different domains

using techniques like data-reconstruction, projection, MMD, etc

[14, 15, 24]. While out-of-distribution generalization has primarily

been done for image and text classification, there have also been

interesting applications to visual question answering [40], busi-

ness process predictions [43] and medical diagnosis using human

annotated spurious features [38].

6 CONCLUSION
We present an environment-agnostic approach to identify invariant

features and improve the generalization of deep learning models

for classification of sequential datasets. Our approach overcomes

the inherent drawback of invariant risk minimization based meth-

ods which rely on prior knowledge of the different environments

or sources of spurious correlations while training. We develop a

masking function over the input features that continually detects

and gradually removes spurious features from the model during
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training, resulting in only the invariant features remaining. We

also prove that the family of masking functions satisfying these

conditions will minimize loss even under the most adverse test

distributions. We show that our approach results in models that can

generalize to out-of-distribution data and perform competitively

on a range of sequential datasets without the need for prior en-

vironment knowledge and perfect data segmentation. We believe

that this work motivates the strength of environment-agnostic ap-

proaches for generalization and as part of future work, we intend

to formally identify the domain of masking functions that can be

used in this setting, determine the effectiveness of other models

that satisfy the minimax optimization such as GANs, as well as

extend this approach to other prediction tasks.
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A APPENDIX
Our appendix contains implementation details of the experiments

in the paper as described in Section 4.

A.1 Experiment Implementation Details
For both the Punctuated SST-2 and AG News datasets, we used

a 3-layer (50-50-2) MLP with ReLU activations, based on the av-

erage of the 50-dimensional GloVe (glove.6B.50d) [30] embed-

ding word vectors as inputs. These are pre-trained word vector

embeddings that have been trained on Wikipedia articles. We

achieve similar results with the 300-dimensional word vectors as

well (glove.6B.300d). For Punctuated SST-2 we use 501 steps and

penalty weight of 7.5k where the penalty is used after 100 steps.

ERM and Inv-ERM use a learning rate of 0.01 and regularizer weight

of 0.0005. EASP uses a learning rate of 0.05, scaling factor of 10, and

regularizer weight 0.0001 with a warm up of 50 steps, while IRMv1

and IRM5% use a learning rate of 0.001 and regularizer weight of

0.0001. For AG News we use 401 steps and penalty weight of 7.5k

where the penalty is used after 100 steps. We set the learning rate

to 0.01 and regularizer weight to 0.0001 for all the methods and the

scaling factor to 10.

For the Colored HAR, Augmented BPIC 2018, and Augmented BPIC

2019 datasets, we use an LSTM with one layer and hidden size of

100, followed by a linear layer of size 100 with ReLU activation.

For the Colored HAR dataset we use a batch size of 64 and use

401 steps with a penalty weight of 10 which is used after 5 steps.

The learning rate is set to 0.01 for all methods. We don’t use a

regularizer for ERM and Inv-ERM, set it to 0.000001 for EASP with

scaling factor of 10 and 0.000007 for IRMv1 and IRM5%. For the

Augmented BPIC 2018 dataset we use a batch size of 20% of training

and 451 steps with a penalty weight of 10 used after 5 steps. The

learning rate is set to 0.005 for all models with a regularizer weight

of 0.000001 for EASP with scaling factor 10 and 0.000007 for IRMv1

and IRM5%. For the Augmented BPIC 2019 dataset we use a batch

size of 10% of training and 451 steps with a penalty weight of 10

after 5 steps. The learning rate is set to 0.005 for ERM and Inv-ERM,

0.05 for EASP with a scaling factor of 10 and 0.009 for IRMv1 and

IRM5%. Regularizer weights are same as BPIC 2018 dataset.
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