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Abstract—An increasing number of community spaces are
being instrumented with heterogeneous IoT sensors and actuators
that enable continuous monitoring of the surrounding environ-
ments. Data streams generated from the devices are analyzed
using a range of analytics operators and transformed into
meaningful information for community monitoring applications.
To ensure high quality results, timely monitoring, and application
reliability, we argue that these operators must be hosted at edge
servers located in close proximity to the community space. In
this paper, we present a Resource Efficient Adaptive Monitoring
(REAM) framework at the edge that adaptively selects workflows
of devices and operators to maintain adequate quality of infor-
mation for the application at hand while judiciously consuming
the limited resources available on edge servers. IoT deployments
in community spaces are in a state of continuous flux that are
dictated by the nature of activities and events within the space.
Since these spaces are complex and change dynamically, and
events can take place under different environmental contexts,
developing a one-size-fits-all model that works for all types
of spaces is infeasible. The REAM framework utilizes deep
reinforcement learning agents that learn by interacting with each
individual community spaces and take decisions based on the
state of the environment in each space and other contextual infor-
mation. We evaluate our framework on two real-world testbeds
in Orange County, USA and NTHU, Taiwan. The evaluation
results show that community spaces using REAM can achieve
> 90% monitoring accuracy while incurring ∼ 50% less resource
consumption costs compared to existing static monitoring and
Machine Learning driven approaches.

I. INTRODUCTION

With the rise in popularity of smart city initiatives, an in-

creasing number of community spaces are being instrumented

with off-the-shelf sensors and actuators to be used as parts of

various community monitoring applications [22], [27]. These

applications can include traffic monitoring, accident detection

for emergency response, water network monitoring, and air

quality monitoring, among others. The community spaces can

cover diverse geographical areas–classrooms, buildings, road

intersections, city districts, etc.–and can be instrumented with

varying density and heterogeneity of sensors. We note that

the measurements and data from the sensors are analyzed

using various analytics, composed of multiple operators. The

sensors and analytics used by each monitoring application

are dependent on the application’s objective. The analytics

in this setting, refer to algorithms that analyze and convert

incoming sensor measurements into results based on the appli-

cation’s objective. The analytics could range from simple rule-

based heuristics to more complex machine learning models.

A common approach is to send the sensor data over the

Internet to be analyzed by analytics deployed in resource-rich

data centers. However, this can result in congested networks,

slow response times, and service interruptions since data

centers are often located far from the community spaces [10].

Moreover, monitoring applications that are time-sensitive and

critical (e.g., flood, fire detection), can suffer from significant

performance degradation that can have a large negative impact

on the community.

Leveraging the compute resources of edge servers like net-

work gateways or dedicated workstations [1], can ensure that

network bandwidth is preserved instead of sending continuous

data streams from a multitude of sensors to the cloud. Fig. 1

illustrates a sample road intersection instrumented with various

sensors. In this space, cameras, motion sensors, moisture

sensors and traffic lights are connected to the edge server and

power source via wired connections. Other sensors such as

turbidity and pH meters are battery powered and wirelessly

connected. Remote services like weather forecasts and social

media reports can also be used at the edge to provide external

information about the community. System administrators or

community stakeholders may choose to concurrently execute

different monitoring applications and hence activate different

sensors and analytics at any given moment.

Fig. 1: Sample use case of a community space instrumented

with multiple sensors and actuators, an edge server, and other

environmental contextual information.

The objectives of monitoring applications could be met

using approaches that use different sets of sensors and analytic

operators, each of which would require a certain amount of

compute, networking and other resources, and would provide

a certain quality of results for the application [4], [5]. For
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example, a pedestrian detection application could: (1) use

video feeds from a surveillance camera and an object detection

algorithm, or (2) set up a motion sensor to activate above a

certain threshold. The first approach is fine-grained and pro-

vides more accurate results while incurring much larger costs

in terms of compute and networking resources for continuous

monitoring than the second approach which is more coarse-
grained. Since the events driving most monitoring applications

are not continuous and can occur sporadically, the costs of

utilizing resource-heavy sensors and analytics for continuous

monitoring can quickly add up.
Efforts towards monitoring of community spaces using IoT

analytics have predominantly been based on the assumption

that each application utilizes a specific sensing and analytics

approach [27], [21]. However, it is important to note that

under certain contexts, coarse-grained approaches can provide

sufficient quality results and can also be used to trigger fine-

grained approaches. For instance, in the pedestrian detection

example described above, the number of instances of pedestri-

ans crossing an intersection on a quiet street during night time

would be low. Hence, the coarse-grained motion sensor based

approach could be used to detect the potential presence of

pedestrians and to then trigger the fine-grained camera based

approach if a pedestrian was detected. This adaptive approach

would be able to achieve sufficient quality of results while

incurring lower costs than if the fine-grained approach was

run continuously. Community monitoring applications could

attain sufficiently accurate results while incurring low costs

by intelligently deciding between using different approaches

at different times based on the state of the community space

and other contextual information. This decision making frame-

work can be implemented in different ways, including simple

heuristics, rule-based approaches and learning driven models.
However, community spaces are complex, change dynam-

ically, and events in different spaces can take place under

different contexts due to differences in location, demographics,

structure, etc., making it extremely challenging to develop

accurate rules or models for each individual space. It is

also important for the framework to be able to make online

decisions with noisy inputs and to work well under diverse

conditions. For these reasons, we use Reinforcement Learn-

ing (RL) to drive the decision making framework since it

employs agents that learn to make better decisions directly

from experience by interacting with the environment [23]. In

this paper, we study the problem of Resource Efficient Adap-
tive Monitoring of community spaces and present a decision

making framework at the edge that dynamically selects the

sensors and analytics to execute at any given time to meet

the objectives of the monitoring applications. The framework

takes into account application priorities while ensuring low

compute, networking and energy costs. Specifically, we make

the following contributions -

• We present our novel REAM framework deployed at the

edge which to our knowledge is among the first resource

efficient adaptive monitoring solutions for monitoring

community spaces (Section II).

• We formulate the problem and present our reinforcement

learning based approach for decision making at the edge

(Section III). We concretize the proposed approach using

two real monitoring applications: stormwater contamina-

tion monitoring and pedestrian counting.

• We evaluate our framework on two real-world testbeds in

Orange County, USA and NTHU, Taiwan and compare

it to baseline approaches (Sections IV, V).

II. ARCHITECTURE

In this section, we describe the architecture for our proposed

Resource Efficient Adaptive Monitoring (REAM) framework.

Fig. 2 illustrates the structure and workflow of the monitoring

framework with two edge servers that have three sample

monitoring applications running on them.

Fig. 2: REAM framework architecture and workflow.

IoT Sensors and Analytic Operators. Each application relies

on the measurements of a specific set of sensors that have been

instrumented in the community space. The communication and

data transmission between the sensors and the edge server

can take place through various channels like WiFi, Bluetooth,

wired connections, ZigBee, LoRa, etc. Once the sensor data is

received at the edge server, it is run through a set of analytic

operators which could constitute ETL (Extract, Transforming,

Load) functions, Machine Learning models, Time-series anal-

yses, among others in order to obtain useful information.

Action Plans. Since each application can use different com-

binations of sensors and analytics to achieve its objective with

differing quality of results, we define each combination as

an action plan where each plan can be thought of as an

execution graph or workflow of sensors and analytic operators.

They can vary in their execution complexity (large workflows

with numerous sensor inputs and analytics) and their resource

requirements (resource-heavy sensors, large data volumes,

complex analytics models). In our framework, as illustrated
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in Fig. 2, every monitoring application is a collection of

action plans which can be coarse-grained and provide a

baseline quality of continuous monitoring while consuming

less resources, or various fine-grained action plans that provide

a range of in-depth monitoring at higher costs, providing better

results than the baseline.

RL Agents. In the REAM framework, at each timestep, an

application can choose to execute one of its action plans as

denoted by the current tags in Fig. 2. The decision of which

action plan to execute is taken by a Reinforcement Learning

agent that learns by interacting with the community space

based on its application’s objective. The agent observes the

readings from the application’s sensors, outputs of the analytic

operators, and other external community space contextual

information such as the weather and time of day. It uses this in-

formation to develop a probabilistic learning model that drives

the selection of which action plan to execute. Our framework

design assigns one agent for each application. We opt not to

create a global agent across all applications at the edge for the

following reasons - (1) Flexibility: Individual agents simplify

the process of dynamically adding or removing monitoring

applications since agents can be trained independently of oth-

ers unlike with a global agent, (2) Tractability: The dynamic

and complex nature of community spaces can result in the

agent having to reason about an extremely large number of

states [6]. By assigning one agent to each application, we can

ensure that the number of states is manageable, (3) Simplicity:
Applications can have different objectives and operate at

different time granularities. It is therefore difficult to define a

global objective for each community space that is normalized

across different applications. Furthermore, individual agents

allow each application to set its own timestep granularity

for sensing, monitoring, and analysis, despite the resulting

decisions may slightly differ from the optimal ones. Hence,

we opt to create individual agents.

REAM Runtime. Since each edge server has a limited amount

of resources, there can be occasions when there are insufficient

resources available to execute all the optimal action plans

determined by each application’s agent. The REAM Runtime

is a middleware sitting on each edge server that allocates

available resources to each application based on its priority

during runtime. The REAM Runtime of an edge server main-

tains the relative priorities of its monitoring applications by

communicating with the Edge Server Coordinator.

Edge Server Coordinator. In order to maintain a repository of

the available action plans and the state of each edge server and

its applications, we design an Edge Server Coordinator that

can reside in the cloud or on an edge server. It also maintains

knowledge of (1) the application states including action plans

belonging to each application, their resource requirements as

well as the application objectives, and (2) edge server states

which include the resource availability at each server and the

current applications and action plans deployed. Agents can use

this information to take decisions, and system administrators

can use the coordinator to modify application objectives and

resource availability.

III. FORMULATION

In this section we formulate the problem of resource effi-

cient adaptive monitoring in community spaces, describe our

approach to represent the decision making as a reinforcement

learning task, and then present our RL-based approach.

A. Resource Efficient Adaptive Monitoring

We consider a community space that has a set of monitoring

applications A, where each application ai ∈ A has a priority

aφi associated with it. For example, a gunshot detection ap-

plication in a community would have a higher priority than

a parking violation monitoring application. The community

space is instrumented with a set of sensors S, whose data can

be analyzed using a set of analytic operators O that are hosted

on a set of edge servers.

Fig. 3: Example of two action plans for a stormwater visible

contamination monitoring application.

We define a set of action plans P , where each plan pj ∈ P
consists of a workflow of sensors and analytic operators, and

services a specific application. Each action plan pj provides a

certain benefit B(pj) for the monitoring application it services

which is dependent on the application’s objective. Each plan pj
also incurs a cost C(pj) which reflects the amount of resources

Rk of type k (e.g., CPU, bandwidth, power, memory, etc.), that

it consumes to run all the sensing and analytics present in the

action plan. We then define the overall utility of an action plan
pj as : U(pj) = B(pj)

C(pj)
.

Fig. 3 shows an example of two different action plans that

service the same stormwater visible contamination monitoring

application. Plan p1 utilizes a simple turbidity sensor that

would be less accurate than the camera based solution of Plan

p2, since it relies on a manually set and potentially erroneous

threshold. Moreover, today’s state-of-the-art vision algorithms

can typically achieve high levels of accuracy and thus p2 can

provide a much higher benefit to the application. However,

the cost incurred by p1 is much lower than that of p2, since

the periodic capture and transmission of images can consume

a lot of network bandwidth, the camera would require more

power, and the vision algorithm would also consume more

compute resources in order to provide results in near real-

time. The benefit vs. cost tradeoff captured by the utility of

an action plan, is also dependent on various environmental

contexts of the community space which REAM leverages.

For instance, at night, the camera images may not be good

enough for the vision algorithm to detect discoloration and
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debris, which might result in both action plans having similar

accuracy. Hence, it would be a prudent decision to execute

the coarse-grained plan more frequently at night since it can

achieve similar benefit at lower costs, and the fine-grained plan

during the day when it can provide much higher benefit. The

REAM agents learn various spatio-temporal characteristics of

each community space to provide a customized and accurate

monitoring solution.

B. RL Formulation and Prioritized Resource Allocation

Fig. 4: Reinforcement Learning with DNN driven policy [13].

Consider the general setting shown in Fig. 4, where a

reinforcement learning agent interacts with an environment.
At each time step t, the agent observes some state st, and

then chooses to perform an action at based on a policy. Once

the action is performed, the environment transitions its state to

st+1 and the agent receives a reward rt. The state transitions

and rewards are stochastic and are assumed to have the Markov

property, i.e., the state transition probabilities and rewards

depend only on the state of the environment st and the action

at taken by the agent.

State Space. In the REAM framework, we represent the state

st of each application’s RL agent at any given time as a class

object that consists of the following attributes - (1) S ′ : the

operating state of the sensors servicing the application, (2) O′ :
the analytic operators currently running, (3) v(A′) : the value

returned by the analytic operators, and (4) Ext : external state

and contextual information about the community space (e.g.,

time of day, weather information, etc.), which can influence

the performance of the sensors and analytic operators.

Action Space. At each timestep, an application’s agent deter-

mines its action space as a set of valid action plans P ′ ⊆ P
that it could potentially execute from its current state. The

timestep is configurable, which can be different for individual

applications in the space. Each plan pj ∈ P ′ consists of

a set of active sensors, their operational states (on/off for

simple sensors, PTZ for a camera), and a set of active analytic

operators together with its workflow.

Reward. The reward rt obtained by the agent for executing an

action plan is the utility provided by the plan. The benefit of

plan pj depends on the specific application (e.g., classification

accuracy, distance based error, etc.) We compute the cost of pj
by first normalizing the amount of resources required of each

type (CPU, bandwidth, memory, etc.) across all action plans of

the application and then calculating a weighted sum of these

normalized costs for plan pj as : C(pj) =
∑|R|

k=1 wk × R
pj

k ,
where wk refers to the weight and R

pj

k refers to the normalized

amount of resources of type k required for plan pj . The

weights allow system administrators to prioritize the conserva-

tion of certain types of resources and lessen their importance

if they are abundantly available.

Training Algorithm. Each agent can only control its action

plan selection and has no apriori knowledge of the rewards

or the state transitions which can be affected by external

factors as well. During training, the agent interacts with the

community space environment and observes the rewards and

state transitions while choosing different action plans. The

agent’s goal is to select action plans in a way that maximizes

the cumulative reward Jt it receives over any time period T ,

i.e., Jt =
∑T

t′=t γ
t′−trt′ , where γ is a discount factor ∈ [0, 1]

and rt′ is the reward at timestep t′. We then define Q∗(s, pj)
as the maximum expected reward achievable by following

a policy π(s, pj), which refers to the probability of action

plan pj being chosen by the agent when in state s. That is,

Q∗(s, pj) = E[rt + γmaxQ∗(st+1, pjt+1)|st, pjt] [20].

Since community spaces are complex and can have a

large number of possible {state, action plan} pairs, it would

be infeasible to store the policy. Hence, we use function
approximators such as Deep Neural Networks (DNNs) [8] to

represent the policy by estimating Q∗(s, pj).

Algorithm 1 Deep Q-learning Algorithm

1: Initialize Replay Buffer D
2: Initialize Q, DNN with random weights θ
3: for t = 1→ T do
4: With probability ε, select a random action plan pj

otherwise, select pj = max
p

Q(st, p; θ)

5: Communicate chosen plan with REAM Runtime and receive
allowed plan p′j

6: Execute action plan p′j and observe environment to get reward
rt and state st+1

7: Store transition (st, p
′
j , rt, st+1) in D

8: Sample random minibatch of transitions (sk, pk, rk, sk+1)
from D

9: Set yj = rj + γmax
p

Q(st+1, p; θ)

10: Perform gradient descent step on (yj −Q(st, pj ; θ))
2 with

respect to θ

11: end for

We represent the action plan decision making policy as a

neural network with weights θ which takes the current state

of the RL agent as input and outputs a probability distribution

over all valid potential next action plans. Note that this allows

the RL agent to continue executing the current action plan

in the next timestep as well. We train the agents using the

deep Q-learning algorithm [16] as shown in Algorithm 1. It

uses an ε-greedy policy [23] in order to select an action plan

by either randomly selecting a plan pj with a probability

ε, or selecting the plan with the maximum value of the

probability distribution. At each timestep, the chosen action

plan is executed and its reward and the next state are observed.

We store the agent’s transitions in a buffer D of fixed size

and then perform gradient descent to update the weights θ of

the neural network using a minibatch of transitions drawn at
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random from the buffer.

Prioritized Resource Allocation. The REAM Runtime mid-

dleware at each edge server employs our proposed Prioritized

Resource Allocation (PRA) algorithm (Algorithm 2) to al-

locate resources among its different monitoring applications.

At each timestep, the REAM Runtime receives action plan

change requests from a subset of its monitoring applications’

RL agents. It then allocates resources to each application in

decreasing order of their priority Aφ. If the edge server does

not have sufficient resources available to execute an agent’s

requested action plan, the agent executes the baseline coarse-

grained action plan instead, resulting in potentially lower

rewards. This design choice can be easily modified into more

comprehensive approaches, for example, to select feasible fine-

grained plans.

Algorithm 2 Prioritized Resource Allocation (PRA)

1: Input: Action plan resource requirements PR = {pR1 , ..., pRj },

Application priority Aφ, Available edge server resources R =
{R1, ...,Rk}

2: for t = 1→ T do
3: Obtain set of action plan requests from subset of agents
4: A′ ⊆ A
5: Re-order ai ∈ A′ based on priority aφ

i

6: for i = 1→ |A′| do
7: Obtain resource requirements pRj of ai’s chosen action

plan pj
8: R = R \ pRj
9: if ∃k : Rk < 0 then

10: Allow agent to execute coarse-grained action plan p0
11: else
12: Allow agent to execute its chosen action plan pj
13: end if
14: end for
15: end for

IV. EXPERIMENTAL TESTBEDS

In this section, we describe the real-world community mon-

itoring testbeds located in Orange County, USA and NTHU,

Taiwan, and the monitoring applications that we deploy to

evaluate the performance of our REAM framework.

Fig. 5: Photos of our testbeds showing: (a) a storm drain and

locations of sensing units in Orange County and (b) smart

street lamps at NTHU campus.

A. Stormwater Contamination Monitoring

We utilize five stormwater sensing units that have been

instrumented by Orange County Public Works Department

(OCPWD) in order to monitor the quality of the water flowing

through the storm drains (Fig. 5). The stormwater can get con-

taminated while flowing into the drains by collecting pollutants

like bacteria from human or animal waste, fertilizers, and even

chemicals from industries that illicitly discharge their waste

into these drains [24]. Each sensing unit consists of several

hydraulic and chemical sensors to measure pH, turbidity,

dissolved oxygen, flow rate, etc., that together are capable

of detecting a wide range of potential contaminants. The

sensor measurements are transmitted using LoRa networks

and are analyzed at an edge server using Machine Learning

classifiers to determine the presence of contamination. The

sensing units are deployed in secure underwater housing and

are battery powered. Accessing these units in order to replace

the batteries, therefore, involves significant efforts to dig up the

housing and access the hardware within, hence frequent battery

replacement would incur large costs. OCPWD’s objective is to

prolong the battery life while maintaining contamination event

detection accuracy.

Since stormwater contamination events occur sporadically

with long periods of normal activity, measurements of a

subset of sensors can be sufficient to provide coarse-grained

signatures that can then be used to trigger all the sensors

for fine-grained monitoring during contamination events. This

is because using all the sensors for continuous monitoring

would consume a lot of battery power. The goal of deploying

our REAM framework is to accurately identify stormwater

contamination events while prolonging the battery life of these

sensing units by appropriately switching between coarse and

fine grained monitoring.

Fig. 6: Sensor-rich smart street lamps - NTHU campus.

B. Pedestrian Counting

We have instrumented eight smart street lamps on the

NTHU campus, as shown in Fig. 6, where each street lamp

is instrumented with a power supply, an Ethernet switch, a

Raspberry Pi (which also serves as a Bluetooth and Zigbee

gateway), and a wide spectrum of environmental sensors, such

as motion (PIR, passive infrared), temperature/humidity, and

air quality (PM 2.5) sensors. Four of the lamps are equipped
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with 3MP cameras, of which three are fixed bullet cameras

and one is a PTZ camera. The lamps are connected using a

heterogeneous network consisting of Gigabit Ethernet, WiFi

mesh, LoRa and NB-IoT. We install edge servers in two of

the street lamps for running monitoring applications. The edge

servers are Intel NUC PCs, each has a 4-core CPU at 1.7 GHz,

8 GB RAM, and 500 GB disk.

We utilize this testbed for a pedestrian counting application

that attempts to profile the movement of people at main

intersections. This is to dynamically dispatch security guards

to direct on-campus vehicles when intersections are crowded.

The goal of the campus administration is to infer these profiles

using as little resources as possible to ensure resource avail-

ability for other on-demand (emergency) applications. Using

fine-grained camera feeds coupled with analytic libraries like

YOLOv3 [19] and OpenCV [2] can result in accurate counts,

but this approach is resource intensive. Since the flow of

pedestrians is not continuous (fewer people walking at night),

a coarse-grained motion sensor could be used to trigger

the camera based analytics in order to conserve resources.

However, since different moving objects (e.g., car, bicycle,

etc.) can also activate the motion sensor, its accuracy would

be lower than that of camera feeds. The goal of deploying

REAM is to be able to learn when pedestrians are likely to be

present and switch between coarse and fine-grained monitoring

to preserve resources.

C. Resource Consumption Measurements

Since the goal of the REAM framework for both the above

applications is to be able to achieve application objectives

while utilizing as little resources as possible, we capture the

actual resource consumption (CPU, networking, power) of the

various devices and analytic operators in order to run faithful

experiments when comparing our solution against baseline

approaches. Table I summarizes the power consumption of

the individual devices.

TABLE I: Power Consumption of Key Devices
Device Make/Model Power (W) Note
Motion Optex LX-402 0.33
Camera LiteOn 3MP 3

PC Intel i3 @ 1.7 GHz 6 Idle
PC Intel i3 @ 1.7 GHz 27.5 Loaded

Stormwater In-Situ 600 0.54

We also profile the two computer vision libraries (YOLOv3,

OpenCV) by analyzing 100 random video frames from the

surveillance camera at a resolution of 2048 × 1536 and 30

frames-per-second. For our setup, YOLOv3 takes 16.28 s to

analyze a video frame with an average CPU load of 100%,

while OpenCV takes 60.92 ms with an average CPU load of

129%. We note that the measurements are done using CPU

only, because GPUs may not be available on edge servers.

V. EVALUATIONS

A. Experimental Setup

Implementation. We implement the REAM framework using

Python. The RL agents are implemented using Keras [3],

where each agent is a neural network containing two fully

connected hidden layers with 24 neurons. We update the policy

network parameters using the Adam algorithm [12] with a

learning rate of 0.001 and implement our analytic operators

for monitoring applications using Scikit-learn [18].

Data. For the stormwater contamination monitoring appli-

cation, we use four months of sensor measurements. We

use three months for training and one month for testing.

The measurements have a granularity of 15 minutes and the

contamination event ground truth was annotated by an expert

from OCPWD. We also obtained precipitation data for the

location and battery consumption information of the sensing

unit. We use two sensors - dissolved oxygen and pH, that

are most sensitive to changes in the ecosystem to form the

coarse-grained baseline action plan along with a Support

Vector Machine (SVM) classifier. But since the changes can

be due to minor natural variances in the chemical composition

of the water, the coarse-grained plan can result in a number

of false-positives. We hence define one fine-grained action

plan that uses more information, consisting of the previous

sensors along with temperature, Total Dissolved Solids (TDS),

conductivity, and turbidity sensors and uses a Random Forest

classifier, that is triggered by the coarse-grained approach and

can more accurately determine if a contamination event has

occurred. We define the reward for the REAM RL agent based

on the utility provided, where the benefit B(pj) of every action

plan is its classification accuracy and its cost C(pj) is the total

battery consumption of the sensors and analytic operators in

the action plan.

Fig. 7: Sample video frames from a street lamp camera for

the pedestrian counting application. The recognized objects

and bounding boxes are given by YOLOv3.

For the pedestrian counting application, we use one week’s

worth of video data from a camera and obtain motion sensor

readings for the same period. We use five days for training and

two days for testing. The measurements have a granularity of

one second. Fig. 7 shows four sample frames of the video

data. We define the coarse-grained action plan to consist of

the binary output analyzed from the motion sensor. This plan

is sufficient to capture situations where there are none or just
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one pedestrian at a given time as shown in the top left frame

of Fig. 7. However, we notice that the motion sensor can be

triggered by other objects such as the vehicles in the top right

frame resulting in false positives. Hence, we define two fine-
grained action plans that run OpenCV [2] and YOLOv3 [19]

object detection algorithms respectively, which can also handle

cases where there are many pedestrians simultaneously present

as shown in the bottom left frame. The YOLOv3 library is

more powerful in that it can more accurately handle situations

where there are multiple different objects like pedestrians and

vehicles present together as shown in the bottom right frame.

We hence assume that the output of the YOLOv3 plan is the

ground truth for our evaluations. The benefit of every action

plan is defined as its distance from the ground truth in terms

of the pedestrian count, and its cost is a weighted sum of its

power, bandwidth and CPU consumption. We assume equal

weights in the evaluations if not otherwise specified.

Comparison. For each application, we compare the perfor-

mance of the REAM framework that adaptively switches

between action plans, to the performance of each of the action

plans executed in isolation which reflects static monitoring

approaches, which is the current practice. We also compare

this Reinforcement Learning based framework to a Machine

Learning baseline approach utilizing Random Forest that uses

the same training and test data to choose action plans. This

allows us to determine the effectiveness of the continuous

learning provided by the REAM framework with its periodic

updates, compared to the supervised learning approach taken

by Random Forest.

B. Results

1) Stormwater Contamination Monitoring: We measured

the accuracy achieved in classifying contamination events for

the test data (Table II) and observed that REAM achieved a

90.9% accuracy which is comparable to the 95.4% achieved

by using only the fine-grained action plan and better than

the 88.2% obtained by using a Random Forest supervised

learning approach and the 73.3% achieved by using just the

coarse-grained action plan. Moreover, the REAM framework

consumed 44% less energy than the fine-grained action plan,

resulting in a longer battery life by 24 days that we derived

based on the two D-cell alkaline battery capacity of the In-Situ

600 stormwater sensing unit.

REAM had a 20 minute delay on average in detecting

contamination events, compared to the 14, 24 and 45 minute

delays achieved by the fine-grained, Random Forest, and

coarse-grained approaches respectively. Fig. 8 shows a zoomed

in view of the contamination event ground truth and the action

plans chosen by the REAM RL agent during a week in the test

period. We observe that for most of the contamination events,

the agent utilizes the fine grained action plan to achieve high

accuracy and ends up using the coarse grained plan during

periods when no events occur. The occasional shift to the fine

grained plan as shown by the red circle occurs since the agent

explores different action plans based on the ε-greedy policy

described in Section III-B to adapt to changing environmental

conditions, e.g., dry vs. wet weather, seasonal patterns, etc.

From these results, we can see that the REAM framework

can increase the battery replacement cycle from less than 1
month with the fine-grained approach to almost 2 months with

less than a 5% drop in accuracy and a detection delay within

5 minutes on average.

TABLE II: Stormwater Contamination Monitoring

Comparison
Approach

Accuracy
(%)

Total Energy
Consum. (J)

Exp. Batt.
Life (days)

Avg. Detection
Delay (mins)

REAM 90.9 86.4 53 20.2
Random Forest 88.2 101.77 44 24.7

Fine-grained 95.4 155.52 29 14.4
Coarse-grained 73.3 46.08 98 45.9

Fig. 8: REAM RL Agent action plan selection to determine

contamination events.

TABLE III: Pedestrian Counting

Comparison
Approach

Distance from
Ground truth(%)

Total Power
Consumption (W)

Total Data
Generated (GB)

REAM 7.1 61.8 33.1
Random Forest 15.4 54.6 30.3

YOLOv3 0 126.5 55.62
OpenCV 37.3 39.32 55.62

Motion Sensor 62.3 36 0.0005

2) Pedestrian Counting: Table III shows a summary of the

performance comparisons, where we report the total power

consumption as a sum of the power consumption of the

sensors (motion, camera) and the edge servers. REAM had

a 7.1% error compared to the YOLOv3 based approach that

we assumed to be the ground truth and performed better than

the Random Forest, OpenCV and the coarse-grained motion

sensor based approaches. However, the YOLOv3 library is

very resource intensive, and this coupled with the significant

power consumption of using a camera continuously, results

in REAM having 51% less power consumption over the test

period. The REAM framework also results in 40% less data

being generated than the YOLOv3 and OpenCV approaches

that require continuous generation and transmission of video

data.

Fig. 9 illustrates a heatmap based comparison of the

pedestrian count ground truth per hour during a week and

the corresponding most frequent action plan chosen by the
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Fig. 9: Comparisons of hourly pedestrian count ground truth

and action plan chosen by REAM framework during a week.

REAM RL agent during that hour. We see that the number

of pedestrians is the highest during the day (8am - 5pm) and

during those periods the predominantly used action plan is

YOLOv3 which results in high accuracy. During the night and

early mornings, when extremely few pedestrians are on the

road, the RL agent chooses to use the motion sensor approach

which is sufficiently accurate to model the pedestrian flow.

The REAM framework can thus achieve > 90% accuracy

(hence not missing many people), while consuming ∼ 50%
less power and generating less data (hence consuming less

resources), compared to static monitoring approaches.

VI. RELATED WORK AND CONCLUSION

The concept of continuously monitoring smart spaces has

appeared in several research areas, including pervasive com-

puting [7] and ambient sensing [14]. Merlino et al. [15]

progressively process sensor data at the edge servers, fog

nodes, and cloud servers to accelerate the analytics in smart

spaces. Hong et al. [10] consider the problem of splitting

analytics into smaller pieces to deploy them on heteroge-

neous fog nodes. Various Machine Learning algorithms have

been applied in smart spaces for edge analytics. Zhang et

al. [28] tailor a Convolutional Neural Network (CNN) model

for activity recognition analytics to fit it on multiple less-

powerful edge nodes. Similarly, Hung et al. [11] propose

VideoEdge, a framework to cost-efficiently determine query

plans for analyzing video streams. There are also efforts that

apply machine learning for decision making under resource

constraints [26]. Vaisenberg et al. [25] use POMDP to control

surveillance cameras to record events in resource-constrained

smart spaces. Han et al. [9] and Oda et al. [17] use reinforce-

ment learning for event identification in urban environments.

However, these efforts do not cater to heterogeneous sensor

inputs, continually changing community environments, and do

not focus on resource-efficiency.

In this paper, we present a Resource Efficient Adaptive
Monitoring (REAM) framework at the edge, that balances the

resource requirements and objectives of multiple community

monitoring applications in order to provide good quality mon-

itoring of community spaces, while incurring low compute,

networking, and energy costs. REAM uses Reinforcement

Learning agents that determine which sensors and analytics

workflows to execute by interacting with the community space

and obtaining contextual information about the environment.

We evaluate the framework with data from two real-world

testbeds and observe that the REAM framework can achieve

> 90% monitoring accuracy while incurring ∼ 50% lower

resource consumption costs than static monitoring approaches

and also performs better than another Machine Learning

approach. Our future work aims to developing resiliency un-

der sensor and communication failures, addressing cascading

events by modeling inter-event relationships, and developing

learning approaches to automate action plan creation given

some sensor and analytics association rules.
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